

Learn Python by Doing

100 Practical Projects for Beginners

Sarful Hassan

Preface

This book, Learn Python by Doing: 100 Practical

Projects for Beginners, is designed to help beginners

learn Python through hands-on projects. Instead of focusing

only on theory, this book takes a practical approach,

allowing you to apply concepts in real-world scenarios.

Who This Book Is For This book is for anyone interested in

learning Python, including:

Beginners with little or no programming

experience.

Students and educators looking for hands-on

exercises.

Hobbyists who enjoy coding small projects.

Developers looking to reinforce their Python skills

through practical challenges.

How This Book Is Organized The book consists of 100

projects, each covering a different concept in Python. The

chapters are structured to gradually increase in complexity,

starting from simple applications like a basic calculator

and moving toward more interactive projects like GUI-

based games and automation scripts.

Each chapter includes:

A brief explanation of the concept.

A step-by-step guide to implementing the project.

A complete Python code example.

Suggestions for expanding the project further.

What Was Left Out To keep the book focused on practical

coding, the following topics are not covered in detail:

Advanced algorithms and data structures.

Deep theoretical explanations of Python internals.

Complex software engineering practices.

For readers interested in these topics, we recommend

additional books and online resources specializing in those

areas.

Code Style (About the Code) All code examples in this

book follow PEP 8, Python’s official style guide. Code is

written in a beginner-friendly format, avoiding unnecessary

complexity. Readers are encouraged to experiment with the

examples, modify them, and test different implementations

to improve their understanding.

Release Notes This is the First Edition of the book, and it

includes 100 Python projects covering topics like games,

utilities, automation, and data handling. Future editions may

include more advanced topics based on reader feedback.

Notes on the First Edition While every effort has been

made to ensure accuracy, some minor errors or typos may

still exist. We welcome feedback and suggestions to

improve future editions.

MechatronicsLAB Online Learning For additional

resources, tutorials, and updates related to this book, visit

our website:

Website: mechatronicslab.net

Email: mechatronicslab.net@gmail.com

Acknowledgments for the First Edition We would like to

thank our readers, supporters, and the Python community

for their contributions. Special thanks to all those who

provided feedback during the writing process.

Copyright (MechatronicsLAB) All rights reserved. No part

of this book may be reproduced, stored, or shared without

https://www.mechatronicslab.net/
mailto:mechatronicslab.net@gmail.com

the publisher's permission, except for personal use and

educational purposes.

Disclaimer The information and code examples in this book

are provided as-is without warranty of any kind. The author

and publisher are not responsible for any issues resulting

from the use of the content in this book. Readers are

encouraged to test and modify the code in a safe

environment.

Table of Contents

Chapter 0 Introduction to Python

Chapter 1: Basic Calculator

Chapter 2: To-Do List Application

Chapter 3: Temperature Converter

Chapter 4: Simple Alarm Clock

Chapter 5: Countdown Timer

Chapter 6: Age Calculator

Chapter 7: Mad Libs Game

Chapter 8: Simple Interest Calculator

Chapter 9: Rock, Paper, Scissors Game

Chapter 10: Number Guessing Game

Chapter 11: Binary to Decimal Converter

Chapter 12: Decimal to Binary Converter

Chapter 13: Unit Converter (Length, Mass, etc.)

Chapter 14: Currency Converter

Chapter 15: Tic-Tac-Toe Game

Chapter 16: Email Slicer (Extract Username from Email)

Chapter 17: Countdown Timer

Chapter 18: Simple Chatbot

Chapter 19: Birthday Reminder App

Chapter 20: Basic Expense Tracker

Chapter 21: Fibonacci Series Generator

Chapter 22: Prime Number Checker

Chapter 23: Palindrome Checker

Chapter 24: Leap Year Checker

Chapter 25: Random Password Generator

Chapter 26: Dice Roller Simulator

Chapter 27: Multiplication Table Generator

Chapter 28: Odd or Even Number Checker

Chapter 29: Simple Voting System

Chapter 30: Character Frequency Counter

Chapter 31: Basic HTML Page Generator

Chapter 32: Print the First N Fibonacci Numbers

Chapter 33: Count Vowels in a String

Chapter 34: Check if a Number is Prime

Chapter 35: Random Joke Generator

Chapter 36: Reverse a String

Chapter 38: Word Frequency Counter

Chapter 39: Armstrong Number Checker

Chapter 40: Sum of Digits Calculator

Chapter 41: Find the GCD and LCM of Two Numbers

Chapter 42: Sorting a List of Numbers

Chapter 43: Find the Maximum and Minimum from a List

Chapter 44: Square Root Finder

Chapter 45: Count Words in a Sentence

Chapter 46: Check for Anagram Strings

Chapter 47: Simple String Encryption and Decryption

Chapter 48: Number Guessing Game with GUI

Chapter 49: String to Title Case Converter

Chapter 50: Days Between Two Dates Calculator

Chapter 51: Fibonacci Series Using Recursion

Chapter 52: Countdown Timer Using Tkinter

Chapter 53: Check if a Year is Leap Year

Chapter 54: Find All Divisors of a Number

Chapter 55: Factorial Calculator Using Recursion

Chapter 56: Sum of Even Numbers in a List

Chapter 57: Basic Phonebook Application

Chapter 58: Check if a String is a Pangram

Chapter 59: Calculate BMI (Body Mass Index)

Chapter 60: Count the Number of Digits in a Number

Chapter 61: Sum of All Elements in a List

Chapter 62: Print Prime Numbers from 1 to N

Chapter 63: Convert Kilometers to Miles

Chapter 64: Generate Multiplication Table of a Given

Number

Chapter 65: Count Consonants in a String

Chapter 66: Check if a Word is a Palindrome

Chapter 67: Convert Time to Seconds

Chapter 68: Remove Duplicate Elements from a List

Chapter 69: Find the Largest Element in a List

Chapter 70: Check if a String is a Number

Chapter 71: Python Quiz Game

Chapter 72: Palindrome Number Finder

Chapter 73: Create a Simple Quiz App

Chapter 74: Create a Simple Text Editor

Chapter 75: Calculator Using GUI

Chapter 76: Reverse a Number

Chapter 77: Simple Email Validation

Chapter 78: Convert Hours to Minutes

Chapter 79: Text to Speech Application

Chapter 80: Word Count from a File

Chapter 81: Phone Number Validator

Chapter 82: Convert Celsius to Fahrenheit

Chapter 83: Write a Program to Create a Folder

Chapter 84: Check if a String is a Substring of Another

String

Chapter 85: Count the Number of Occurrences of Each

Character

Chapter 86: Reverse a List

Chapter 87: Find the Second Largest Element in a List

Chapter 88: Create a Digital Clock

Chapter 89: Number System Conversion

Chapter 90: Guess the Number Game

Chapter 91: Python Dictionary Sorting

Chapter 92: Check for Perfect Number

Chapter 93: Create a Random Quote Generator

Chapter 94: Create a Basic Unit Converter

Chapter 95: Generate a Random Color

Chapter 96: Simple Python Stopwatch

Chapter 97: Sorting a List of Tuples

Chapter 98: Extract Numbers from a String

Chapter 99: Check if a Number is a Palindrome

Chapter 100: Create a Python Program to Calculate

Factorial

Chapter 0 Introduction to

Python

Python is a popular, high-level, and easy-to-read

programming language widely used in web development,

data science, artificial intelligence, automation, and more. It

was created by Guido van Rossum and first released in

1991. Python follows a design philosophy emphasizing code

readability and simplicity.

Why Learn Python?

1. Easy to learn and use – Python has a simple

syntax that resembles English, making it

beginner-friendly.

2. Versatile – Can be used in web development,

automation, data science, machine learning,

game development, and more.

3. Large community – A vast community of

developers provides extensive support, tutorials,

and open-source contributions.

4. Cross-platform – Runs on different operating

systems like Windows, Mac, and Linux.

5. Rich library support – A huge ecosystem of

libraries and frameworks makes development

faster and easier.

Python Environment and Ecosystem

Python provides a flexible environment for coding, testing,

and running applications. The ecosystem includes libraries,

frameworks, and tools that make Python powerful for

various use cases.

Setting Up the Python Environment

Installing Python: Download it from Python's

official site. Installation is straightforward and

includes the Python interpreter and package

manager pip.

Python Interpreters: Python code runs using an

interpreter such as:

CPython (default and most widely used)

PyPy (faster alternative with JIT

compilation)

Jython (for Java integration)

IronPython (for .NET integration)

IDEs and Code Editors:

Windows: PyCharm, VS Code, IDLE,

Jupyter Notebook, Atom, Spyder, Thonny

Linux: PyCharm, VS Code, Vim, Jupyter

Notebook, Spyder, Sublime Text

Mac: PyCharm, VS Code, IDLE, Jupyter

Notebook, Atom, Spyder, BBEdit

Python Package Ecosystem

Python has a rich ecosystem of packages and libraries that

extend its functionality:

Web Development: Django, Flask, FastAPI,

Tornado

Data Science & Machine Learning: NumPy,

Pandas, TensorFlow, Scikit-learn, Matplotlib,

Seaborn

Automation & Scripting: Selenium,

BeautifulSoup, PyAutoGUI, Fabric

Game Development: Pygame, Panda3D, Arcade

Networking & Cybersecurity: Scapy, Requests,

Paramiko, Twisted

GUI Development: Tkinter, PyQt, Kivy, wxPython

https://www.python.org/downloads/

Managing Python Packages

pip: The default package manager for Python (pip

install package_name).

virtualenv: Creates isolated environments for

different projects (virtualenv env_name).

conda: Used for scientific computing and package

management (conda install package_name).

requirements.txt: Used to manage

dependencies (pip freeze > requirements.txt).

poetry: A modern dependency management tool

(poetry add package_name).

Basic Python Syntax

Printing Output

print("Hello, World!")

Output:

Hello, World!

Python's environment and ecosystem make it an incredibly

powerful and flexible language. Keep practicing by working

on small projects like a calculator, to-do list, or a web

scraper, and you’ll master it in no time! 🚀

Chapter 1: Basic Calculator

Overview A basic calculator is one of the fundamental

projects in Python programming. It provides essential

arithmetic operations such as addition, subtraction,

multiplication, and division. Understanding how to

implement a calculator helps in learning user input

handling, conditional statements, and function creation in

Python.

This chapter covers the step-by-step implementation of a

basic calculator, user input handling, function-based

operations, and error management to ensure smooth

execution.

Key Concepts of Basic Calculator in Python

Arithmetic Operations:

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/)

Modulus (%)

Exponentiation (**)

User Input Handling:

Using input() function

Converting strings to integers or floats

Functions in Python:

Defining functions for calculations

Calling functions with user inputs

Error Handling:

Handling division by zero

Handling invalid inputs

Parameter Table

Operator Functionality

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (Remainder)

** Exponentiation

Basic Rules for Calculator in Python

Rule Correct Example

Use correct data types for

calculations
result = int(a) + int(b)

Handle division errors if b != 0: result = a / b

Convert inputs before

performing operations

a = float(input("Enter a

number: "))

Syntax Table

S

L
Concept Syntax/Example Description

1
Define a

function

def add(a, b):

return a + b

Defines a

function for

addition

2
Get user

input

num1 =

input("Enter

number: ")

Takes input

from the user

3

Convert

input to

integer/float

num1 =

float(num1)

Converts user

input to

number

4

Perform

arithmetic

operation

result = num1 +

num2

Performs

addition

5
Display

result

print("Result:",

result)

Prints the

output

Real-Life Project: Simple Calculator

Project Code:

1. def add(a, b):

2. return a + b

3. def subtract(a, b):

4. return a - b

5. def multiply(a, b):

6. return a * b

7. def divide(a, b):

8. if b != 0:

9. return a / b

10. else:

11. return "Error: Division by zero"

12. print("Select operation:")

13. print("1. Add")

14. print("2. Subtract")

15. print("3. Multiply")

16. print("4. Divide")

17. choice = input("Enter choice (1/2/3/4): ")

18. num1 = float(input("Enter first number: "))

19. num2 = float(input("Enter second number: "))

20. if choice == '1':

21. print("Result:", add(num1, num2))

22. elif choice == '2':

23. print("Result:", subtract(num1, num2))

24. elif choice == '3':

25. print("Result:", multiply(num1, num2))

26. elif choice == '4':

27. print("Result:", divide(num1, num2))

28. else:

29. print("Invalid choice")

Project Code Explanation Table

Lin

e
Code Section Description

1-2
def add(a, b):

return a + b

Defines a function to

perform addition and return

the sum.

3-4 def subtract(a, Defines a function to

b): return a - b perform subtraction and

return the difference.

5-6
def multiply(a,

b): return a * b

Defines a function to

perform multiplication and

return the product.

7-

11
def divide(a, b):

Defines a function to

perform division with error

handling to prevent division

by zero.

12-

16

print("Select

operation:")

Displays available

mathematical operations to

the user.

17

choice =

input("Enter

choice (1/2/3/4):

")

Prompts the user to select a

mathematical operation.

18

num1 =

float(input("Ente

r first number:

"))

Prompts the user to input the

first number and converts it

to float for arithmetic

operations.

19

num2 =

float(input("Ente

r second

number: "))

Prompts the user to input the

second number and converts

it to float.

20-

21

if choice == '1':

print("Result:",

add(num1,

num2))

Checks if the user selected

addition and calls the add

function to display the sum.

22-

23

elif choice ==

'2':

print("Result:",

subtract(num1,

num2))

Checks if the user selected

subtraction and calls the

subtract function to display

the difference.

24- elif choice == Checks if the user selected

25 '3':

print("Result:",

multiply(num1,

num2))

multiplication and calls the

multiply function to display

the product.

26-

27

elif choice ==

'4':

print("Result:",

divide(num1,

num2))

Checks if the user selected

division and calls the divide

function to display the

quotient.

28-

29

else:

print("Invalid

choice")

Handles invalid user input by

displaying an error message.

Expected Results

The program asks the user to choose an

operation.

The user enters two numbers.

The program performs the selected arithmetic

operation.

The result is displayed to the user.

If the user tries to divide by zero, an error

message is displayed.

Hands-On Exercise

Try modifying the calculator with the following additional

features:

1. Add a square root function that calculates the

square root of a number.

2. Add an exponentiation function (x^y) that

raises one number to the power of another.

3. Allow the user to perform multiple

calculations without restarting the program.

4. Improve the user interface by formatting the

output neatly.

5. Implement an option to exit the program

when the user is done calculating.

Conclusion This basic calculator demonstrates

fundamental Python concepts such as user input handling,

functions, arithmetic operations, and error management. By

mastering these concepts, developers can build more

complex applications such as scientific calculators, financial

calculators, and automation scripts.

Chapter 2: To-Do List

Application
Overview A to-do list application is a practical project that

helps users manage tasks efficiently. This application allows

users to add, remove, and view tasks while keeping track of

completed and pending activities. Learning to build a to-do

list enhances understanding of data structures, file

handling, and basic user interaction in Python.

This chapter covers the step-by-step implementation of a to-

do list application, user input handling, list operations, and

file handling for persistent storage.

Key Concepts of To-Do List in Python

Basic List Operations:

Adding tasks

Removing tasks

Marking tasks as complete

Displaying tasks

User Input Handling:

Using input() function

Handling invalid inputs

File Handling:

Storing tasks in a text file

Retrieving saved tasks on program

restart

Functions in Python:

Defining functions for task management

Calling functions with user inputs

To-Do List Operations Table

Operation Functionality

Add Task Adds a new task to the list

Remove Task Deletes a task from the list

View Tasks Displays all pending tasks

Mark as

Complete
Marks a task as done

Save Tasks Saves tasks to a file for persistence

Load Tasks
Loads saved tasks when the program

starts

Basic Rules for To-Do List in Python

Rule Correct Example

Use a list to store tasks tasks = []

Append new tasks

correctly

tasks.append("Buy

groceries")

Remove tasks carefully
tasks.remove("Buy

groceries")

Use a loop for displaying

tasks
for task in tasks: print(task)

Syntax Table

S

L
Concept Syntax/Example Description

1
Define a

function

def add_task(task):

tasks.append(task)

Defines a

function to add

a task

2
Get user

input

task = input("Enter

task: ")

Takes input

from the user

3
Append

task to list
tasks.append(task)

Adds a task to

the list

4

Remove

task from

list

tasks.remove(task)
Removes a

specified task

5
Display

tasks

for task in tasks:

print(task)

Displays all

tasks

Real-Life Project: To-Do List Application

Project Code:

1. tasks = []

2. def add_task(task):

3. tasks.append(task)

4. print(f'Task "{task}" added!')

5. def remove_task(task):

6. if task in tasks:

7. tasks.remove(task)

8. print(f'Task "{task}" removed!')

9. else:

10. print("Task not found!")

11. def view_tasks():

12. if tasks:

13. print("Your Tasks:")

14. for idx, task in enumerate(tasks, 1):

15. print(f'{idx}. {task}')

16. else:

17. print("No tasks in your list!")

18. while True:

19. print("\nOptions: 1. Add Task 2. Remove Task 3. View

Tasks 4. Exit")

20. choice = input("Enter your choice: ")

21. if choice == '1':

22. task = input("Enter task: ")

23. add_task(task)

24. elif choice == '2':

25. task = input("Enter task to remove: ")

26. remove_task(task)

27. elif choice == '3':

28. view_tasks()

29. elif choice == '4':

30. print("Exiting program. Have a productive day!")

31. break

32. else:

33. print("Invalid choice! Please select a valid option.")

Project Code Explanation Table

Lin Code Section Description

e

1 tasks = []
Initializes an empty list

to store tasks.

2 def add_task(task):
Defines a function to

add a task to the list.

3 tasks.append(task) Adds the task to the list.

4
print(f'Task "{task}"

added!')

Confirms that the task

has been added.

5 def remove_task(task):

Defines a function to

remove a task from the

list.

6 if task in tasks:
Checks if the task exists

in the list.

7 tasks.remove(task)
Removes the task from

the list.

8
print(f'Task "{task}"

removed!')

Confirms that the task

has been removed.

9-

10

else: print("Task not

found!")

Displays an error

message if the task is

not found.

11 def view_tasks():
Defines a function to

display all tasks.

12 if tasks:
Checks if the task list is

not empty.

13 print("Your Tasks:")
Displays a message

indicating tasks.

14-

15

for idx, task in

enumerate(tasks, 1):

print(f'{idx}. {task}')

Loops through and

prints all tasks with

numbering.

16-

17

else: print("No tasks in

your list!")

Displays a message if

no tasks are present.

18 while True:

Starts an infinite loop

for continuous user

interaction.

19-

20
print() & input()

Displays options and

takes user input for

operation selection.

21-

23
if choice == '1':

Handles adding a new

task.

24-

26
elif choice == '2':

Handles removing a

task.

27-

28
elif choice == '3':

Handles viewing all

tasks.

29-

31
elif choice == '4': Handles program exit.

32-

33
else:

Handles invalid user

inputs.

Expected Results

The program allows users to add, remove, and

view tasks.

Tasks are displayed in an organized format.

Users can exit the program when they are done.

Invalid choices are handled with an error

message.

Hands-On Exercise Try improving the to-do list application

with these additional features:

1. Save tasks to a file so that they persist after

restarting the program.

2. Mark tasks as completed and display

completed tasks separately.

3. Allow editing tasks instead of just adding and

removing them.

4. Improve the user interface with better

formatting and menu options.

5. Add a priority system to sort tasks by urgency.

Conclusion This to-do list application introduces essential

Python concepts such as list operations, user input handling,

and loops. By expanding this project, developers can create

more advanced task management applications with

enhanced functionalities.

Chapter 3: Temperature

Converter
Overview A temperature converter is a simple yet essential

application that allows users to convert temperatures

between different units, such as Celsius, Fahrenheit, and

Kelvin. This project enhances understanding of

mathematical operations, conditional statements, and user

input handling in Python.

This chapter covers the step-by-step implementation of a

temperature converter, user input handling, mathematical

conversions, and function-based design.

Key Concepts of Temperature Converter in Python

Mathematical Conversion Formulas:

Celsius to Fahrenheit: (C × 9/5) + 32

Fahrenheit to Celsius: (F - 32) × 5/9

Celsius to Kelvin: C + 273.15

Kelvin to Celsius: K - 273.15

Fahrenheit to Kelvin: (F - 32) × 5/9 +

273.15

Kelvin to Fahrenheit: (K - 273.15) × 9/5 +

32

User Input Handling:

Using input() function

Handling invalid inputs

Functions in Python:

Defining functions for conversions

Temperature Conversion Table

Conversion Type Formula

Celsius to Fahrenheit (C × 9/5) + 32

Fahrenheit to Celsius (F - 32) × 5/9

Celsius to Kelvin C + 273.15

Kelvin to Celsius K - 273.15

Fahrenheit to Kelvin (F - 32) × 5/9 + 273.15

Kelvin to Fahrenheit (K - 273.15) × 9/5 + 32

Basic Rules for Temperature Converter in Python

Rule Correct Example

Use correct

mathematical

formulas

fahrenheit = (celsius * 9/5) + 32

Handle invalid

inputs properly

try: float(input("Enter temperature:

"))

Use functions for

each conversion

def celsius_to_fahrenheit(c): return

(c * 9/5) + 32

Syntax Table

S

L

Concep

t
Syntax/Example Description

1
Define a

function

def

celsius_to_fahrenheit(c):

return (c * 9/5) + 32

Defines a

function for

Celsius to

Fahrenheit

conversion

2

Get

user

input

temp =

float(input("Enter

temperature: "))

Takes input

from the user

3

Convert

using

formula

fahrenheit = (celsius *

9/5) + 32

Performs

conversion

4
Display

result

print("Temperature in

Fahrenheit:", fahrenheit)

Prints the

converted

temperature

Real-Life Project: Temperature Converter

Project Code:

1. def celsius_to_fahrenheit(c):

2. return (c * 9/5) + 32

3. def fahrenheit_to_celsius(f):

4. return (f - 32) * 5/9

5. def celsius_to_kelvin(c):

6. return c + 273.15

7. def kelvin_to_celsius(k):

8. return k - 273.15

9. def fahrenheit_to_kelvin(f):

10. return (f - 32) * 5/9 + 273.15

11. def kelvin_to_fahrenheit(k):

12. return (k - 273.15) * 9/5 + 32

13. print("Select conversion type:")

14. print("1. Celsius to Fahrenheit")

15. print("2. Fahrenheit to Celsius")

16. print("3. Celsius to Kelvin")

17. print("4. Kelvin to Celsius")

18. print("5. Fahrenheit to Kelvin")

19. print("6. Kelvin to Fahrenheit")

20. choice = input("Enter choice (1-6): ")

21. temp = float(input("Enter temperature: "))

22. if choice == '1':

23. print("Result:", celsius_to_fahrenheit(temp))

24. elif choice == '2':

25. print("Result:", fahrenheit_to_celsius(temp))

26. elif choice == '3':

27. print("Result:", celsius_to_kelvin(temp))

28. elif choice == '4':

29. print("Result:", kelvin_to_celsius(temp))

30. elif choice == '5':

31. print("Result:", fahrenheit_to_kelvin(temp))

32. elif choice == '6':

33. print("Result:", kelvin_to_fahrenheit(temp))

34. else:

35. print("Invalid choice!")

Project Code Explanation Table

Lin

e
Code Section Description

1 def celsius_to_fahrenheit(c):

Defines a

function to

convert Celsius

to Fahrenheit.

2 return (c * 9/5) + 32

Applies the

conversion

formula for

Celsius to

Fahrenheit.

3 def fahrenheit_to_celsius(f):

Defines a

function to

convert

Fahrenheit to

Celsius.

4 return (f - 32) * 5/9

Applies the

conversion

formula for

Fahrenheit to

Celsius.

5 def celsius_to_kelvin(c):

Defines a

function to

convert Celsius

to Kelvin.

6 return c + 273.15

Applies the

conversion

formula for

Celsius to Kelvin.

7 def kelvin_to_celsius(k): Defines a

function to

convert Kelvin to

Celsius.

8 return k - 273.15

Applies the

conversion

formula for

Kelvin to Celsius.

9 def fahrenheit_to_kelvin(f):

Defines a

function to

convert

Fahrenheit to

Kelvin.

10 return (f - 32) * 5/9 + 273.15

Applies the

conversion

formula for

Fahrenheit to

Kelvin.

11 def kelvin_to_fahrenheit(k):

Defines a

function to

convert Kelvin to

Fahrenheit.

12
return (k - 273.15) * 9/5 +

32

Applies the

conversion

formula for

Kelvin to

Fahrenheit.

13-

19
print() statements

Displays

available

temperature

conversion

options.

20
choice = input("Enter choice

(1-6): ")

Prompts the user

to select a

conversion type.

21 temp = float(input("Enter

temperature: "))

Prompts the user

to enter a

temperature.

22-

23

if choice == '1':

print("Result:",

celsius_to_fahrenheit(temp))

Checks if the

user selected

Celsius to

Fahrenheit and

performs the

conversion.

24-

25

elif choice == '2':

print("Result:",

fahrenheit_to_celsius(temp))

Checks if the

user selected

Fahrenheit to

Celsius and

performs the

conversion.

26-

27

elif choice == '3':

print("Result:",

celsius_to_kelvin(temp))

Checks if the

user selected

Celsius to Kelvin

and performs the

conversion.

28-

29

elif choice == '4':

print("Result:",

kelvin_to_celsius(temp))

Checks if the

user selected

Kelvin to Celsius

and performs the

conversion.

30-

31

elif choice == '5':

print("Result:",

fahrenheit_to_kelvin(temp))

Checks if the

user selected

Fahrenheit to

Kelvin and

performs the

conversion.

32-

33

elif choice == '6':

print("Result:",

kelvin_to_fahrenheit(temp))

Checks if the

user selected

Kelvin to

Fahrenheit and

performs the

conversion.

34-

35
else: print("Invalid choice!")

Handles invalid

input by

displaying an

error message.

Expected Results

The program asks the user to choose a conversion

type.

The user enters a temperature value.

The program converts the temperature using the

appropriate formula.

The result is displayed to the user.

If the user enters an invalid choice, an error

message is displayed.

Hands-On Exercise Try improving the temperature

converter with these additional features:

1. Allow repeated conversions without restarting

the program.

2. Format output to two decimal places for

better readability.

3. Add an option to exit the program when the

user is done.

4. Handle edge cases such as negative Kelvin

values.

5. Improve the user interface by displaying

conversion explanations.

Conclusion This temperature converter project

demonstrates essential Python concepts such as

mathematical operations, user input handling, and

functions. By expanding this project, developers can create

more advanced unit conversion applications with better

usability.

Chapter 4: Simple Alarm Clock

Overview A simple alarm clock is a fundamental project

that helps users set alarms to remind them of specific

events. This project enhances knowledge of time handling,

loops, and sound notifications in Python.

This chapter covers the step-by-step implementation of an

alarm clock, user input handling, time-based execution, and

sound alerts.

Key Concepts of Alarm Clock in Python

Time Handling:

Using the time module

Working with datetime for alarm

scheduling

User Input Handling:

Using input() to set alarm time

Validating input format

Loops and Conditional Statements:

Continuously checking the current time

Triggering an alarm when the set time is

reached

Sound Alerts:

Playing a sound notification when the

alarm rings

Alarm Clock Functions Table

Function Description

Set Alarm

Time

Allows the user to input a specific alarm

time

Check Current

Time
Continuously monitors the system time

Trigger Alarm
Activates sound notification when the time

matches

Basic Rules for Alarm Clock in Python

Rule Correct Example

Use the time module to

fetch the system time
import time

Validate user input

format

try:

datetime.strptime(alarm_time,

"%H:%M")

Use loops to monitor time while True:

Syntax Table

S

L

Conce

pt
Syntax/Example

Descripti

on

1

Import

time

modul

e

import time

Enables

time-

based

operations

2

Get

current

time

current_time =

datetime.now().strftime("%H:%

M")

Fetches

system

time

3

Loop

for

checki

ng

time

while True:

Runs

continuous

ly to

monitor

time

4
Play

sound
playsound("alarm.mp3")

Plays an

alarm

sound

when

triggered

Real-Life Project: Simple Alarm Clock

Project Code:

1. import time

2. from datetime import datetime

3. from playsound import playsound

4. alarm_time = input("Enter alarm time (HH:MM): ")

5. print(f"Alarm set for {alarm_time}")

6. while True:

7. current_time = datetime.now().strftime("%H:%M")

8. if current_time == alarm_time:

9. print("Time to wake up!")

10. playsound("alarm.mp3")

11. break

12. time.sleep(1)

Project Code Explanation Table

Li

ne
Code Section Description

1 import time

Imports the time

module for

delays.

2 from datetime import datetime

Imports datetime

for handling time

operations.

3 from playsound import playsound

Imports

playsound to

play an alarm

sound.

4
alarm_time = input("Enter alarm

time (HH:MM): ")

Prompts the user

to input the

alarm time in

HH:MM format.

5
print(f"Alarm set for

{alarm_time}")

Displays a

confirmation

message with

the alarm time.

6 while True:

Starts an infinite

loop to

continuously

check the time.

7 current_time = Fetches the

datetime.now().strftime("%H:%M") current system

time.

8 if current_time == alarm_time:

Checks if the

current time

matches the

alarm time.

9 print("Time to wake up!")

Displays a

message when

the alarm

triggers.

10 playsound("alarm.mp3")
Plays the alarm

sound.

11 break

Exits the loop

once the alarm

rings.

12 time.sleep(1)

Pauses execution

for one second

before checking

again.

Expected Results

The program asks the user to enter an alarm time.

It continuously checks the current time.

When the time matches the set alarm, it plays a

sound.

The program exits after the alarm rings.

Hands-On Exercise Try improving the alarm clock with

these additional features:

1. Allow multiple alarms to be set at once.

2. Add a snooze feature to repeat the alarm after

a few minutes.

3. Display a countdown until the alarm rings.

4. Use a graphical user interface (GUI) with

Tkinter for better user experience.

5. Integrate custom sound selection for different

alarm tones.

Conclusion This alarm clock project introduces Python

concepts such as time handling, loops, and sound alerts. By

expanding this project, developers can create more

advanced alarm applications with enhanced functionalities.

Chapter 5: Countdown Timer

Overview A countdown timer is a simple yet useful

application that counts down from a specified number of

seconds and notifies the user when the time reaches zero.

This project improves understanding of loops, time

management, and user input handling in Python.

This chapter covers the step-by-step implementation of a

countdown timer, user input handling, time-based

execution, and displaying the remaining time.

Key Concepts of Countdown Timer in Python

Time Handling:

Using the time module

Implementing delays with time.sleep()

User Input Handling:

Taking input for the countdown duration

Validating input format

Loops and Conditional Statements:

Using a while loop to decrement the

timer

Displaying the remaining time at

intervals

Countdown Timer Functions Table

Function Description

Set Timer
Allows the user to input the

countdown duration

Start Countdown Decrements time every second

Display

Remaining Time
Shows the time left on the countdown

Trigger

Notification

Notifies the user when time reaches

zero

Basic Rules for Countdown Timer in Python

Rule Correct Example

Use time.sleep() to

delay execution
time.sleep(1)

Convert user input to

integer

seconds = int(input("Enter time in

seconds: "))

Use a loop to

decrement the timer
while seconds > 0:

Syntax Table

S

L
Concept Syntax/Example Description

1

Import

time

module

import time

Enables time-

based

operations

2
Get user

input

seconds =

int(input("Enter time

in seconds: "))

Takes input

from the user

3
Loop for

countdown
while seconds > 0:

Runs until the

timer reaches

zero

4

Print

remaining

time

print(f"Time left:

{seconds}s")

Displays the

countdown

time

5
Pause for

1 second
time.sleep(1)

Delays

execution by

1 second

Real-Life Project: Countdown Timer

Project Code:

1. import time

2. seconds = int(input("Enter time in seconds: "))

3. while seconds > 0:

4. print(f"Time left: {seconds}s")

5. time.sleep(1)

6. seconds -= 1

7. print("Time's up!")

Project Code Explanation Table

Lin

e
Code Section Description

1 import time
Imports the time module to

use sleep functionality.

2

seconds =

int(input("Enter time

in seconds: "))

Takes user input for

countdown duration and

converts it to an integer.

3 while seconds > 0:
Starts a loop that runs until

the timer reaches zero.

4
print(f"Time left:

{seconds}s")
Displays the remaining time.

5 time.sleep(1)
Delays execution for one

second.

6 seconds -= 1
Decrements the countdown

by one second.

7 print("Time's up!")
Prints a message when the

timer reaches zero.

Expected Results

The program asks the user to enter the

countdown duration.

It continuously updates and displays the

remaining time.

When the countdown reaches zero, it prints

"Time's up!".

Hands-On Exercise Try improving the countdown timer

with these additional features:

1. Add a sound alert when the countdown finishes.

2. Display a graphical progress bar using tqdm .

3. Allow pausing and resuming the countdown

timer.

4. Convert seconds to minutes and seconds for

better readability.

5. Create a GUI version using Tkinter for better

user interaction.

Conclusion This countdown timer project introduces Python

concepts such as loops, time handling, and user input

validation. By expanding this project, developers can create

more advanced time-tracking applications with improved

features.

Chapter 6: Age Calculator

Overview An age calculator is a simple application that

calculates a user's age based on their date of birth. This project

enhances understanding of date handling, user input processing,

and basic arithmetic operations in Python.

This chapter covers the step-by-step implementation of an age

calculator, user input handling, date-based calculations, and

displaying the age in years, months, and days.

Key Concepts of Age Calculator in Python

Date Handling:

Using the datetime module

Fetching the current date

Calculating age from the date of birth

User Input Handling:

Taking input for the date of birth

Validating input format

Arithmetic Operations:

Subtracting two dates to find age

Displaying age in different formats

Age Calculation Table

Calculatio

n Type
Formula

Age in

Years
current_year - birth_year

Age in

Months

(current_year - birth_year) * 12 + (current_month

- birth_month)

Age in

Days
difference_in_days = current_date - birth_date

Basic Rules for Age Calculator in Python

Rule Correct Example

Use datetime

module for date

handling

import datetime

Parse user input

correctly

dob =

datetime.strptime(input("Enter

DOB (YYYY-MM-DD): "), "%Y-

%m-%d")

Calculate the

difference between

dates

age = today.year - dob.year

Syntax Table

S

L

Conce

pt
Syntax/Example

Descripti

on

1

Import

dateti

me

modul

e

import datetime

Enables

date-

based

operations

2

Get

current

date

today = datetime.date.today()

Fetches

the

current

date

3

Get

user

input

dob =

datetime.datetime.strptime(input("Ent

er DOB: "), "%Y-%m-%d")

Takes

input for

the date

of birth

4
Calcula

te age
age = today.year - dob.year

Computes

the user's

age

5
Display

result
print(f"Your age is {age} years")

Prints the

calculated

age

Real-Life Project: Age Calculator

Project Code:

1. import datetime

2. dob = input("Enter your date of birth (YYYY-MM-DD): ")

3. dob = datetime.datetime.strptime(dob, "%Y-%m-%d").date()

4. today = datetime.date.today()

5. age_years = today.year - dob.year

6. age_months = (today.year - dob.year) * 12 + (today.month -

dob.month)

7. age_days = (today - dob).days

8. print(f"Your age is: {age_years} years, {age_months}

months, and {age_days} days.")

Project Code Explanation Table

Lin

e
Code Section Description

1 import datetime

Imports the

datetime module

for date

handling.

2
dob = input("Enter your date of birth

(YYYY-MM-DD): ")

Prompts the user

to enter their

date of birth.

3

dob =

datetime.datetime.strptime(dob, "%Y-

%m-%d").date()

Converts the

input string into

a date object.

4 today = datetime.date.today()

Fetches the

current system

date.

5 age_years = today.year - dob.year
Calculates the

age in years.

6
age_months = (today.year - dob.year)

* 12 + (today.month - dob.month)

Calculates the

age in months.

7 age_days = (today - dob).days
Calculates the

age in total days.

8

print(f"Your age is: {age_years} years,

{age_months} months, and

{age_days} days.")

Displays the

calculated age.

Expected Results

The program asks the user to enter their date of birth.

It calculates the user's age in years, months, and

days.

It displays the result in a formatted output.

Hands-On Exercise Try improving the age calculator with these

additional features:

1. Allow future date validation to prevent errors.

2. Calculate age for a specific target date instead of

just today.

3. Display additional information, such as the day of

the week the user was born.

4. Convert age into different units, such as weeks

and hours.

5. Create a GUI version using Tkinter for better user

interaction.

Chapter 7: Mad Libs Game

Overview The Mad Libs game is a fun and interactive word

game where players fill in blanks with random words to create

humorous and sometimes nonsensical stories. This project

enhances user input handling, string formatting, and basic

program flow control in Python.

This chapter covers the step-by-step implementation of a Mad

Libs game, handling user input, and dynamically generating

creative stories.

Key Concepts of Mad Libs Game in Python

String Handling:

Using placeholders for missing words

Formatting strings dynamically

User Input Handling:

Prompting users for different types of words

Storing user input in variables

Printing and Displaying Outputs:

Generating a completed Mad Libs story

Formatting text output for readability

Mad Libs Game Components Table

Component Description

Story

Template
A predefined story with missing words

User Input
Players enter words (e.g., nouns, verbs,

adjectives)

Story

Generation

The program replaces placeholders with user

input

Basic Rules for Mad Libs Game in Python

Rule Correct Example

Use string

placeholders

story = "Once upon a time, a {adjective}

{noun} {verb} through the {place}."

Get user

input

dynamically

adjective = input("Enter an adjective: ")

Format the story.format(adjective=adjective, noun=noun,

story

properly

verb=verb, place=place)

Syntax Table

S

L
Concept Syntax/Example

Descriptio

n

1

Define a

story

template

story = "Once upon a

time, a {adjective}

{noun} {verb} through

the {place}."

Creates a

template

for Mad Libs

2
Get user

input

noun = input("Enter a

noun: ")

Takes user

input for

the missing

words

3

Use

format()

method

story.format(noun=noun)

Replaces

placeholder

s with user

input

4

Display

complete

d story

print(story)

Prints the

final story

with user

inputs

Real-Life Project: Mad Libs Game

Project Code:

1. print("Welcome to Mad Libs!")

2. noun = input("Enter a noun: ")

3. verb = input("Enter a verb: ")

4. adjective = input("Enter an adjective: ")

5. place = input("Enter a place: ")

6. story = f"Once upon a time, a {adjective} {noun} {verb}

through the {place}. It was an unforgettable journey!"

7. print("\nHere is your Mad Libs story:")

8. print(story)

Project Code Explanation Table

Lin Code Section Description

e

1 print("Welcome to Mad Libs!")
Prints a welcome

message.

2 noun = input("Enter a noun: ")
Prompts the user

for a noun.

3 verb = input("Enter a verb: ")
Prompts the user

for a verb.

4
adjective = input("Enter an adjective:

")

Prompts the user

for an adjective.

5 place = input("Enter a place: ")
Prompts the user

for a place.

6

story = f"Once upon a time, a

{adjective} {noun} {verb} through

the {place}."

Creates a

formatted story

using user input.

7 print("\nHere is your Mad Libs story:")

Prints a header

for the final

story.

8 print(story)

Displays the

completed Mad

Libs story.

Expected Results

The program asks the user to input a series of words.

It generates a fun story using the user's words.

The completed story is printed on the screen.

Hands-On Exercise Try improving the Mad Libs game with

these additional features:

1. Add more placeholders for a longer story.

2. Allow multiple story templates for variety.

3. Give users a choice of themes (e.g., adventure,

mystery, fantasy).

4. Save the generated story to a text file.

5. Use GUI (Tkinter) for better user interaction.

Conclusion This Mad Libs game project introduces Python

concepts such as string formatting, user input handling, and

output display. By expanding this project, developers can create

more engaging and interactive word-based games.

Chapter 8: Simple Interest

Calculator
Overview A Simple Interest Calculator is a useful financial

tool that calculates the interest earned or paid on a principal

amount over a specified period at a given interest rate. This

project enhances understanding of mathematical

operations, user input handling, and formula-based

calculations in Python.

This chapter covers the step-by-step implementation of a

Simple Interest Calculator, handling user input, applying the

interest formula, and displaying the computed results.

Key Concepts of Simple Interest Calculator in Python

Mathematical Formula:

Simple Interest Formula: SI = (P × R × T)

/ 100

P = Principal amount

R = Annual Interest Rate (in %)

T = Time period (in years)

SI = Simple Interest

User Input Handling:

Taking user input for principal, rate, and

time

Validating numeric input

Arithmetic Operations:

Multiplication and division for calculating

interest

Simple Interest Formula Table

Paramete

r
Description

P Principal amount (initial investment or loan)

R Interest rate (annual percentage)

T Time period (years)

SI Computed simple interest

Basic Rules for Simple Interest Calculator in Python

Rule Correct Example

Use correct

mathematical

formula

SI = (P * R * T) / 100

Convert user input to

numbers

principal = float(input("Enter

principal amount: "))

Display result with

proper formatting
print(f"Simple Interest: {SI:.2f}")

Syntax Table

S

L

Concep

t
Syntax/Example Description

1
Define

function

def

calculate_interest(P, R,

T): return (P * R * T) /

100

Creates a

function for

interest

calculation

2
Get user

input

P = float(input("Enter

principal: "))

Takes principal

amount from

the user

3

Comput

e

interest

SI = (P * R * T) / 100

Applies the

simple interest

formula

4
Display

result

print(f"Simple Interest:

{SI:.2f}")

Prints the

computed

interest

Real-Life Project: Simple Interest Calculator

Project Code:

1. def calculate_interest(P, R, T):

2. return (P * R * T) / 100

3. P = float(input("Enter principal amount: "))

4. R = float(input("Enter annual interest rate (in %): "))

5. T = float(input("Enter time period (in years): "))

6. SI = calculate_interest(P, R, T)

7. print(f"Simple Interest: {SI:.2f}")

Project Code Explanation Table

Lin

e
Code Section Description

1
def calculate_interest(P,

R, T):

Defines a function to

calculate simple interest.

2 return (P * R * T) / 100
Uses the formula to

compute interest.

3
P = float(input("Enter

principal amount: "))

Prompts user for the

principal amount and

converts input to a float.

4

R = float(input("Enter

annual interest rate (in

%): "))

Prompts user for interest

rate and converts input to

a float.

5

T = float(input("Enter

time period (in years):

"))

Prompts user for time

period and converts input

to a float.

6

SI =

calculate_interest(P, R,

T)

Calls the function and

stores the computed

interest.

7
print(f"Simple Interest:

{SI:.2f}")

Displays the final

computed interest with

two decimal places.

Expected Results

The program asks the user for principal amount,

interest rate, and time period.

It calculates simple interest using the formula.

The result is displayed with proper formatting.

Hands-On Exercise Try improving the Simple Interest

Calculator with these additional features:

1. Allow compound interest calculation for

advanced financial analysis.

2. Provide multiple interest rate options (e.g.,

monthly, quarterly, yearly).

3. Enhance user interface using a GUI with

Tkinter .

4. Allow interest rate as a decimal input instead

of percentages.

5. Validate negative values to prevent invalid

inputs.

Conclusion This Simple Interest Calculator project

introduces Python concepts such as mathematical

operations, user input handling, and function-based design.

By expanding this project, developers can create more

advanced financial applications with greater functionality.

Chapter 9: Rock, Paper, Scissors

Game
Overview The Rock, Paper, Scissors game is a classic two-

player hand game where players simultaneously choose one

of three options: rock, paper, or scissors. The winner is

determined based on predefined rules. This project

enhances understanding of random module usage, user

input handling, and conditional logic in Python.

This chapter covers the step-by-step implementation of a

Rock, Paper, Scissors game, handling user input, generating

computer choices, and determining the winner.

Key Concepts of Rock, Paper, Scissors Game in

Python

Random Module Usage:

Using random.choice() to generate the

computer’s move

User Input Handling:

Taking user input for their move

Validating correct input

Conditional Statements:

Determining the winner using if-elif-else

statements

Game Rules Table

Player Choice Computer Choice Result

Rock Scissors Player Wins

Scissors Paper Player Wins

Paper Rock Player Wins

Rock Paper Computer Wins

Scissors Rock Computer Wins

Paper Scissors Computer Wins

Same Choice Same Choice Draw

Basic Rules for Rock, Paper, Scissors Game in Python

Rule Correct Example

Use

random.choice() for

computer selection

computer_choice =

random.choice(["rock", "paper",

"scissors"])

Validate user input
if user_choice in ["rock", "paper",

"scissors"]:

Compare choices

with if-elif-else

if user_choice == "rock" and

computer_choice == "scissors":

Syntax Table

S

L
Concept Syntax/Example Description

1

Import

random

module

import random

Enables

random

selection for

the

computer’s

choice

2
Get user

input

user_choice =

input("Enter rock,

paper, or scissors:

").lower()

Takes user

input and

converts it to

lowercase

3

Generate

computer

choice

computer_choice =

random.choice(["rock",

"paper", "scissors"])

Randomly

selects the

computer's

move

4
Determin

e winner

if user_choice ==

computer_choice:

Compares

user and

computer

choices to

determine

the winner

5 Display

result

print("You win!") Prints the

game

outcome

Real-Life Project: Rock, Paper, Scissors Game

Project Code:

1. import random

2. choices = ["rock", "paper", "scissors"]

3. user_choice = input("Enter rock, paper, or scissors:

").lower()

4. if user_choice not in choices:

5. print("Invalid choice! Please enter rock, paper, or

scissors.")

6. else:

7. computer_choice = random.choice(choices)

8. print(f"Computer chose: {computer_choice}")

9. if user_choice == computer_choice:

10. print("It's a draw!")

11. elif (user_choice == "rock" and computer_choice ==

"scissors") or \

12. (user_choice == "scissors" and computer_choice

== "paper") or \

13. (user_choice == "paper" and computer_choice ==

"rock"):

14. print("You win!")

15. else:

16. print("Computer wins!")

Project Code Explanation Table

Lin

e
Code Section Description

1 import random

Imports the random

module to allow

computer-generated

choices.

2
choices = ["rock", "paper",

"scissors"]

Defines a list of

available choices.

3 user_choice = input("Enter Takes input from the

rock, paper, or scissors:

").lower()

user and converts it to

lowercase.

4
if user_choice not in

choices:

Checks if the user input

is valid.

5

print("Invalid choice!

Please enter rock, paper,

or scissors.")

Displays an error

message if input is

invalid.

6-7
computer_choice =

random.choice(choices)

Randomly selects the

computer's choice.

8
print(f"Computer chose:

{computer_choice}")

Displays the computer's

choice.

9-

10

if user_choice ==

computer_choice:

Checks if the game is a

draw.

11-

13
elif conditions

Determines if the user

wins.

14 print("You win!")
Displays the winning

message for the user.

15-

16
else:

Determines if the

computer wins and

displays the result.

Expected Results

The program asks the user to enter rock, paper, or

scissors.

The computer randomly selects a choice.

The program compares the user’s choice with the

computer’s choice.

It determines the winner and displays the result.

If the choices are the same, it declares a draw.

Hands-On Exercise Try improving the Rock, Paper, Scissors

game with these additional features:

1. Allow multiple rounds and track scores.

2. Give the user an option to exit the game

after each round.

3. Introduce an advanced mode with additional

choices like "lizard" and "Spock".

4. Use a graphical interface (GUI) using `Tkinter

Chapter 10: Number Guessing

Game
Overview The Number Guessing Game is a fun and

interactive game where the player tries to guess a randomly

generated number within a specified range. This project

enhances knowledge of random number generation, loops,

conditional statements, and user input handling in Python.

This chapter covers the step-by-step implementation of a

Number Guessing Game, handling user input, generating

random numbers, and providing feedback on guesses.

Key Concepts of Number Guessing Game in Python

Random Module Usage:

Using random.randint() to generate a

random number

User Input Handling:

Taking user input for guesses

Validating input as a number

Loops and Conditional Statements:

Checking if the guess is correct

Giving hints if the guess is too high or too

low

Game Rules Table

Scenario Result

User guesses correctly Player wins

User guesses too high Hint: "Too high! Try again."

User guesses too low Hint: "Too low! Try again."

Basic Rules for Number Guessing Game in Python

Rule Correct Example

Use random.randint() for

number selection

number = random.randint(1,

100)

Validate user input as an guess = int(input("Enter

integer your guess: "))

Use a loop for multiple

attempts
while guess != number:

Syntax Table

S

L
Concept Syntax/Example Description

1

Import

random

module

import random

Enables

random

number

generation

2

Generate

random

number

number =

random.randint(1, 100)

Picks a

random

number

between 1

and 100

3
Get user

input

guess = int(input("Enter

your guess: "))

Takes user

input as an

integer

4
Check

condition
if guess == number:

Compares

guess with

the correct

number

5
Display

result

print("Congratulations!

You guessed it right!")

Prints

winning

message

Real-Life Project: Number Guessing Game

Project Code:

1. import random

2. number = random.randint(1, 100)

3. attempts = 0

4. print("Guess the number between 1 and 100!")

5. while True:

6. guess = int(input("Enter your guess: "))

7. attempts += 1

8. if guess < number:

9. print("Too low! Try again.")

10. elif guess > number:

11. print("Too high! Try again.")

12. else:

13. print(f"Congratulations! You guessed the number in

{attempts} attempts.")

14. break

Project Code Explanation Table

Lin

e
Code Section Description

1 import random

Imports the random module

to generate a random

number.

2

number =

random.randint(1,

100)

Generates a random number

between 1 and 100.

3 attempts = 0
Initializes the attempt

counter.

4

print("Guess the

number between 1

and 100!")

Displays game instructions.

5 while True:
Starts an infinite loop to keep

the game running.

6

guess =

int(input("Enter your

guess: "))

Takes user input and converts

it into an integer.

7 attempts += 1
Increments the attempt

counter with each guess.

8-9 if guess < number:
Checks if the guess is too low

and provides feedback.

10-

11
elif guess > number:

Checks if the guess is too high

and provides feedback.

12-

14

else: If the guess is correct,

congratulates the player and

ends the game.

Expected Results

The program generates a random number

between 1 and 100.

The user keeps guessing until they get the correct

number.

The program provides hints if the guess is too high

or too low.

When the correct number is guessed, the program

displays the number of attempts taken.

Hands-On Exercise Try improving the Number Guessing

Game with these additional features:

1. Set a maximum number of attempts and

display a loss message if the user fails.

2. Allow multiple rounds without restarting the

program.

3. Give players the option to choose a difficulty

level (e.g., easy, medium, hard).

4. Create a GUI version using Tkinter for better

user interaction.

5. Store the best score (least attempts) and

display it as a challenge.

Conclusion This Number Guessing Game project introduces

Python concepts such as loops, conditional logic, user input

handling, and random number generation. By expanding

this project, developers can create more interactive and

engaging number-based games.

Chapter 11: Binary to Decimal

Converter
Overview A Binary to Decimal Converter is a simple

application that converts a binary number (base-2) into a

decimal number (base-10). This project helps in

understanding number systems, user input handling, and

built-in Python functions for conversion.

This chapter covers the step-by-step implementation of a

Binary to Decimal Converter, handling user input,

performing binary-to-decimal conversion, and displaying the

result.

Key Concepts of Binary to Decimal Converter in

Python

Binary and Decimal Number Systems:

Binary (Base-2) consists of only 0 and 1

Decimal (Base-10) consists of digits 0 to

9

Conversion Methods:

Using Python’s built-in int() function

Implementing manual binary-to-decimal

conversion using loops

User Input Handling:

Accepting binary numbers as input

Validating the input to contain only 0

and 1

Binary to Decimal Conversion Table

Binary Decimal

0001 1

0010 2

0100 4

1000 8

1101 13

1111 15

Basic Rules for Binary to Decimal Conversion in

Python

Rule Correct Example

Use int(binary, 2) for

conversion
decimal = int("1101", 2)

Validate user input as

binary
if set(binary) <= {"0", "1"}:

Perform manual conversion

using loop

decimal += int(bit) * (2 **

position)

Syntax Table

SL Concept Syntax/Example Description

1

Convert

binary to

decimal

decimal =

int("1010", 2)

Converts

binary 1010

to decimal 10

2
Get user

input

binary =

input("Enter a

binary number: ")

Takes binary

input from the

user

3
Validate

input

if set(binary) <=

{"0", "1"}:

Ensures input

contains only

0 and 1

4
Display

result

print(f"Decimal

value: {decimal}")

Prints the

converted

decimal

number

Real-Life Project: Binary to Decimal Converter

Project Code:

1. def binary_to_decimal(binary):

2. decimal = int(binary, 2)

3. return decimal

4. binary = input("Enter a binary number: ")

5. if set(binary) <= {"0", "1"}:

6. decimal_value = binary_to_decimal(binary)

7. print(f"The decimal equivalent of {binary} is

{decimal_value}")

8. else:

9. print("Invalid binary number! Please enter only 0s and

1s.")

Project Code Explanation Table

Lin

e
Code Section Description

1-3
def

binary_to_decimal(binary):

Defines a function to

convert a binary

number to decimal.

2 decimal = int(binary, 2)

Uses the built-in

function to convert

binary to decimal.

4
binary = input("Enter a

binary number: ")

Prompts the user for a

binary number input.

5 if set(binary) <= {"0", "1"}:

Checks if the input

contains only 0 and

1 .

6
decimal_value =

binary_to_decimal(binary)

Calls the function to

perform the

conversion.

7

print(f"The decimal

equivalent of {binary} is

{decimal_value}")

Displays the

converted decimal

number.

8-9 else:

Displays an error

message if input is

invalid.

Expected Results

The program asks the user to input a binary

number.

It validates the input to ensure it contains only 0

and 1 .

The binary number is converted into a decimal

value.

The result is displayed to the user.

Hands-On Exercise Try improving the Binary to Decimal

Converter with these additional features:

1. Allow conversion from decimal to binary as

well.

2. Provide step-by-step conversion details to

explain how the number is converted.

3. Enhance input validation by handling empty

inputs and incorrect values.

4. Build a GUI version using Tkinter for better

user experience.

5. Support multiple number system

conversions (e.g., hexadecimal to decimal).

Conclusion This Binary to Decimal Converter project

introduces Python concepts such as built-in functions, loops,

conditional statements, and user input validation. By

expanding this project, developers can create more

advanced number system converters with interactive

features.

Chapter 12: Decimal to Binary

Converter
Overview A Decimal to Binary Converter is a simple

application that converts a decimal number (base-10) into a

binary number (base-2). This project enhances

understanding of number systems, arithmetic operations,

and user input handling in Python.

This chapter covers the step-by-step implementation of a

Decimal to Binary Converter, handling user input,

performing decimal-to-binary conversion, and displaying the

result.

Key Concepts of Decimal to Binary Converter in

Python

Binary and Decimal Number Systems:

Decimal (Base-10) consists of digits 0 to

9

Binary (Base-2) consists of only 0 and 1

Conversion Methods:

Using Python’s built-in bin() function

Implementing manual decimal-to-binary

conversion using loops

User Input Handling:

Accepting decimal numbers as input

Validating the input to ensure it is a valid

number

Decimal to Binary Conversion Table

Decimal Binary

1 0001

2 0010

4 0100

8 1000

13 1101

15 1111

Basic Rules for Decimal to Binary Conversion in

Python

Rule Correct Example

Use bin(decimal)[2:] for

conversion
binary = bin(10)[2:]

Validate user input as a

number
if decimal.isdigit():

Perform manual

conversion using

division and modulus

binary = '' while n > 0: binary =

str(n % 2) + binary; n //= 2

Syntax Table

S

L
Concept Syntax/Example Description

1

Convert

decimal to

binary

binary = bin(10)

[2:]

Converts

decimal 10 to

binary 1010

2
Get user

input

decimal =

int(input("Enter a

decimal number:

"))

Takes decimal

input from the

user

3
Validate

input
if decimal >= 0:

Ensures input is

a non-negative

integer

4
Display

result

print(f"Binary

value: {binary}")

Prints the

converted

binary number

Real-Life Project: Decimal to Binary Converter

Project Code:

1. def decimal_to_binary(decimal):

2. return bin(decimal)[2:]

3. decimal = int(input("Enter a decimal number: "))

4. if decimal >= 0:

5. binary_value = decimal_to_binary(decimal)

6. print(f"The binary equivalent of {decimal} is

{binary_value}")

7. else:

8. print("Invalid input! Please enter a non-negative

number.")

Project Code Explanation Table

Lin

e
Code Section Description

1-2
def

decimal_to_binary(decimal):

Defines a function to

convert a decimal

number to binary.

2 return bin(decimal)[2:]

Uses the built-in bin()

function to convert

decimal to binary.

3
decimal = int(input("Enter a

decimal number: "))

Prompts the user for a

decimal number input.

4 if decimal >= 0:
Ensures the number is

non-negative.

5
binary_value =

decimal_to_binary(decimal)

Calls the function to

perform the

conversion.

6

print(f"The binary equivalent

of {decimal} is

{binary_value}")

Displays the

converted binary

number.

7-8 else:

Displays an error

message if input is

invalid.

Expected Results

The program asks the user to input a decimal

number.

It validates the input to ensure it is a non-negative

integer.

The decimal number is converted into a binary

value.

The result is displayed to the user.

Hands-On Exercise Try improving the Decimal to Binary

Converter with these additional features:

1. Allow conversion from binary to decimal as

well.

2. Provide step-by-step conversion details to

explain how the number is converted.

3. Enhance input validation by handling negative

numbers and invalid inputs.

4. Build a GUI version using Tkinter for better

user experience.

5. Support multiple number system

conversions (e.g., decimal to hexadecimal).

Conclusion This Decimal to Binary Converter project

introduces Python concepts such as built-in functions, loops,

conditional statements, and user input validation. By

expanding this project, developers can create more

advanced number system converters with interactive

features.

Chapter 13: Unit Converter

(Length, Mass, etc.)
Overview A Unit Converter is a useful application that

allows users to convert between different measurement

units, such as length, mass, and temperature. This project

helps in understanding mathematical operations, user input

handling, and function-based programming in Python.

This chapter covers the step-by-step implementation of a

Unit Converter, handling user input, performing unit

conversions, and displaying the converted values.

Key Concepts of Unit Converter in Python

Mathematical Conversion Factors:

Length conversions (meters, kilometers,

miles, feet, inches)

Mass conversions (grams, kilograms,

pounds, ounces)

Temperature conversions (Celsius,

Fahrenheit, Kelvin)

User Input Handling:

Taking user input for the value and unit

type

Validating input to ensure correct

conversions

Functions for Conversion:

Defining functions for each type of unit

conversion

Using dictionaries for efficient lookups

Unit Conversion Table

Conversion Type Formula

Meters to Kilometers km = meters / 1000

Kilometers to Miles miles = km * 0.621371

Feet to Inches inches = feet * 12

Grams to Kilograms kg = grams / 1000

Pounds to Kilograms kg = pounds * 0.453592

Celsius to Fahrenheit F = (C * 9/5) + 32

Fahrenheit to Celsius C = (F - 32) * 5/9

Basic Rules for Unit Converter in Python

Rule Correct Example

Use correct

mathematical

formulas

miles = km * 0.621371

Validate user input
if unit in ('meters', 'kilometers',

'miles'):

Use functions for

conversions

def meters_to_kilometers(meters):

return meters / 1000

Syntax Table

S

L
Concept Syntax/Example Description

1
Convert

length

km = meters /

1000

Converts

meters to

kilometers

2

Convert

temperatur

e

F = (C * 9/5) + 32

Converts

Celsius to

Fahrenheit

3
Convert

mass
kg = grams / 1000

Converts grams

to kilograms

4
Get user

input

value =

float(input("Enter

value: "))

Takes input for

the conversion

Real-Life Project: Unit Converter

Project Code:

1. def meters_to_kilometers(meters):

2. return meters / 1000

3. def kilometers_to_miles(km):

4. return km * 0.621371

5. def celsius_to_fahrenheit(c):

6. return (c * 9/5) + 32

7. def fahrenheit_to_celsius(f):

8. return (f - 32) * 5/9

9. print("Unit Converter")

10. print("1. Meters to Kilometers")

11. print("2. Kilometers to Miles")

12. print("3. Celsius to Fahrenheit")

13. print("4. Fahrenheit to Celsius")

14. choice = input("Enter your choice (1-4): ")

15. value = float(input("Enter the value: "))

16. if choice == '1':

17. print(f"{value} meters is

{meters_to_kilometers(value)} kilometers")

18. elif choice == '2':

19. print(f"{value} km is {kilometers_to_miles(value)}

miles")

20. elif choice == '3':

21. print(f"{value} Celsius is

{celsius_to_fahrenheit(value)} Fahrenheit")

22. elif choice == '4':

23. print(f"{value} Fahrenheit is

{fahrenheit_to_celsius(value)} Celsius")

24. else:

25. print("Invalid choice! Please enter a number between

1 and 4.")

Project Code Explanation Table

Lin

e
Code Section Description

1-2
def

meters_to_kilometers(meters):

Defines a function to

convert meters to

kilometers.

3-4 def kilometers_to_miles(km):

Defines a function to

convert kilometers

to miles.

5-6 def celsius_to_fahrenheit(c):

Defines a function to

convert Celsius to

Fahrenheit.

7-8 def fahrenheit_to_celsius(f):

Defines a function to

convert Fahrenheit

to Celsius.

9 print("Unit Converter")
Prints the title of the

program.

10-

13
print() statements

Displays the

available conversion

options to the user.

14
choice = input("Enter your

choice (1-4): ")

Takes user input to

select a conversion

option.

15
value = float(input("Enter the

value: "))

Takes the numerical

input for conversion

and converts it to a

float.

16-

17
if choice == '1':

Converts meters to

kilometers and prints

the result.

18-

19
elif choice == '2':

Converts kilometers

to miles and prints

the result.

20-

21
elif choice == '3':

Converts Celsius to

Fahrenheit and

prints the result.

22-

23
elif choice == '4':

Converts Fahrenheit

to Celsius and prints

the result.

24- else: Handles invalid

25 choices by

displaying an error

message.

Expected Results

The program asks the user to select a unit

conversion type.

The user enters a value for conversion.

The program converts the value based on the

chosen unit type.

The result is displayed to the user.

Hands-On Exercise Try improving the Unit Converter with

these additional features:

1. Add more unit conversions, such as weight,

speed, and volume.

2. Allow bi-directional conversions, e.g.,

kilometers to meters and meters to kilometers.

3. Use dictionaries to store conversion factors

for scalable conversions.

4. Create a GUI version using Tkinter for better

user experience.

5. Support multiple number system

conversions (e.g., decimal to binary, binary to

decimal).

Conclusion This Unit Converter project introduces Python

concepts such as functions, user input handling, and

mathematical operations. By expanding this project,

developers can create more advanced unit conversion

applications with enhanced functionality.

Chapter 14: Currency Converter

Overview A Currency Converter is a practical application

that allows users to convert one currency into another

based on exchange rates. This project enhances

understanding of API integration, user input handling, and

mathematical calculations in Python.

This chapter covers the step-by-step implementation of a

Currency Converter, fetching real-time exchange rates,

performing currency conversions, and displaying the results.

Key Concepts of Currency Converter in Python

Exchange Rates Handling:

Using real-time exchange rates via an API

(e.g., exchangeratesapi.io , Open

Exchange Rates)

Using predefined exchange rates for

offline mode

User Input Handling:

Accepting user input for source and

target currency

Validating correct currency codes

Arithmetic Operations:

Multiplication for currency conversion

(converted_amount = amount *

exchange_rate)

Currency Conversion Table

From To Conversion Rate (Example)

USD EUR 0.85

EUR GBP 0.86

GBP INR 101.56

INR USD 0.012

USD JPY 110.25

Basic Rules for Currency Converter in Python

Rule Correct Example

Use an API for

real-time rates

requests.get("https://api.exchangerate-

api.com/v4/latest/USD")

Validate user

input as a

currency code

if currency in exchange_rates:

Perform

conversion using

rates

converted_amount = amount *

exchange_rates[target_currency]

Syntax Table

S

L
Concept Syntax/Example

Descripti

on

1

Fetch

exchang

e rates

requests.get("API_URL")

Fetches

live

currency

rates from

an API

2
Get user

input

amount =

float(input("Enter amount:

"))

Takes input

for

currency

amount

3
Validate

input

if currency in

exchange_rates:

Ensures

input is a

valid

currency

code

4

Perform

conversi

on

converted = amount *

exchange_rates[to_currenc

y]

Multiplies

the

amount by

the

exchange

rate

5 Display

result

print(f"Converted amount:

{converted:.2f}")

Prints the

converted

currency

value

Real-Life Project: Currency Converter

Project Code:

1. import requests

2. def get_exchange_rates(base_currency):

3. url = f"https://api.exchangerate-

api.com/v4/latest/{base_currency}"

4. response = requests.get(url)

5. data = response.json()

6. return data['rates']

7. base_currency = input("Enter base currency (e.g., USD,

EUR): ").upper()

8. target_currency = input("Enter target currency:

").upper()

9. amount = float(input("Enter amount: "))

10. rates = get_exchange_rates(base_currency)

11. if target_currency in rates:

12. converted_amount = amount * rates[target_currency]

13. print(f"{amount} {base_currency} is

{converted_amount:.2f} {target_currency}")

14. else:

15. print("Invalid currency code!")

Project Code Explanation Table

Li

ne
Code Section

Descripti

on

1 import requests Imports

the

requests

module to

fetch

exchange

rates from

an API.

2-

6

def

get_exchange_rates(base_currency

):

Defines a

function to

fetch

exchange

rates for a

given base

currency.

3-

4

url = f"https://api.exchangerate-

api.com/v4/latest/{base_currency}

"

Constructs

the API

URL using

the base

currency.

5 data = response.json()

Parses the

response

as JSON.

7
base_currency = input("Enter base

currency: ").upper()

Takes the

base

currency

input from

the user.

8
target_currency = input("Enter

target currency: ").upper()

Takes the

target

currency

input from

the user.

9
amount = float(input("Enter

amount: "))

Takes the

amount for

conversion

and

converts it

to a float.

10 rates =

get_exchange_rates(base_currency

)

Calls the

function to

get

exchange

rates.

11

-

12

if target_currency in rates:

Checks if

the target

currency is

valid and

performs

conversion

.

13

print(f"{amount} {base_currency}

is {converted_amount:.2f}

{target_currency}")

Prints the

converted

currency

amount.

14

-

15

else:

Handles

invalid

currency

codes by

displaying

an error

message.

Expected Results

The program asks the user for base and target

currency codes.

It fetches exchange rates from an API.

The user enters an amount to convert.

The program calculates and displays the

converted amount.

If an invalid currency code is entered, an error

message is displayed.

Hands-On Exercise Try improving the Currency Converter

with these additional features:

1. Allow offline mode with predefined exchange

rates.

2. Support multi-currency conversions in one

execution.

3. Cache exchange rates to reduce API requests.

4. Use GUI (Tkinter) for better user experience.

5. Allow conversion history tracking and display

past conversions.

Conclusion This Currency Converter project introduces

Python concepts such as API integration, user input

handling, and arithmetic operations. By expanding this

project, developers can create a more advanced financial

tool with real-time exchange rate tracking.

Chapter 15: Tic-Tac-Toe Game

Overview Tic-Tac-Toe is a classic two-player game where

players take turns marking spaces in a 3×3 grid with "X" or

"O". The goal is to get three of their marks in a row

(horizontally, vertically, or diagonally). This project helps in

understanding 2D lists, game logic implementation, and

user input handling in Python.

This chapter covers the step-by-step implementation of a

Tic-Tac-Toe game, including board representation, turn-based

gameplay, and win condition checking.

Key Concepts of Tic-Tac-Toe Game in Python

Game Board Representation:

Using a 3×3 list to store the game board

Displaying the board dynamically after

each move

Player Turns Handling:

Allowing two players to take turns

Validating correct input and available

spaces

Win Condition Checking:

Determining if a player has won by

forming a row, column, or diagonal

Declaring a draw if all spaces are filled

without a winner

Tic-Tac-Toe Board Representation

Index Position Board Representation

(0,0) Top-left

(0,1) Top-center

(0,2) Top-right

(1,0) Middle-left

(1,1) Center

(1,2) Middle-right

(2,0) Bottom-left

(2,1) Bottom-center

(2,2) Bottom-right

Basic Rules for Tic-Tac-Toe Game in Python

Rule Correct Example

Store board

as a list

board = [[' ' for _ in range(3)] for _ in

range(3)]

Use a loop

for turns
while not game_over:

Check for a

winner
if check_winner(board, 'X'):

Syntax Table

S

L
Concept Syntax/Example Description

1

Create

game

board

board = [[' ']*3 for _

in range(3)]

Initializes a

3x3 grid with

empty spaces

2
Display

board

`for row in board:

print("".join(row))`

Prints the

game board to

the console

3

Get

player

input

row, col = map(int,

input("Enter row and

column: ").split())

Takes user

input for move

placement

4
Check win

condition

if

check_winner(board,

'X'):

Checks if a

player has won

5
Switch

turns

current_player = 'O' if

current_player == 'X'

else 'X'

Alternates

between

players

Real-Life Project: Tic-Tac-Toe Game

Project Code:

1. def print_board(board):

2. for row in board:

3. print(" | ".join(row))

4. print("-" * 9)

5. def check_winner(board, player):

6. for row in board:

7. if all(cell == player for cell in row):

8. return True

9. for col in range(3):

10. if all(board[row][col] == player for row in

range(3)):

11. return True

12. if all(board[i][i] == player for i in range(3)) or

all(board[i][2-i] == player for i in range(3)):

13. return True

14. return False

15. board = [[' ' for _ in range(3)] for _ in range(3)]

16. current_player = 'X'

17. for turn in range(9):

18. print_board(board)

19. row, col = map(int, input(f"Player {current_player},

enter row and column (0-2): ").split())

20. if board[row][col] == ' ':

21. board[row][col] = current_player

22. if check_winner(board, current_player):

23. print_board(board)

24. print(f"Player {current_player} wins!")

25. break

26. current_player = 'O' if current_player == 'X' else 'X'

27. else:

28. print("Invalid move! Try again.")

29. else:

30. print("It's a draw!")

Project Code Explanation Table

Lin

e
Code Section Description

1-4 def print_board(board):
Defines a function to

print the game board.

2-3
`for row in board:

print("".join(row))`

4 print("-" * 9)
Prints a separator line

for better visibility.

5-

14

def check_winner(board,

player):

Defines a function to

check if a player has

won.

6-8 for row in board:
Checks if any row has all

the same player marks.

9-

11
for col in range(3):

Checks if any column

has all the same player

marks.

12-

13

if all(board[i][i] == player

for i in range(3))

Checks if any diagonal

has all the same player

marks.

14 return False
Returns False if no

winner is found.

15
board = [[' ' for _ in

range(3)] for _ in range(3)]

Initializes an empty 3×3

game board.

16 current_player = 'X'
Sets the starting player

as 'X'.

17 for turn in range(9):
Starts a loop for a

maximum of 9 turns.

18 print_board(board)
Calls the function to

display the board.

19
row, col = map(int,

input())

Takes player input for

row and column

placement.

20-

21

if board[row][col] == ' ': Ensures the chosen cell

is empty before placing

a move.

22-

25

if check_winner(board,

current_player):

Checks for a winner and

ends the game if found.

26

current_player = 'O' if

current_player == 'X' else

'X'

Switches turn between

'X' and 'O'.

27-

28

else: print("Invalid move!

Try again.")

Handles cases where a

player selects an

occupied cell.

29-

30
else: print("It's a draw!")

Declares a draw if all

spaces are filled with no

winner.

Expected Results

The program displays the game board and asks

players to enter row and column numbers.

Players take turns placing their marks on the

board.

If a player gets three marks in a row, column, or

diagonal, they win.

If all spaces are filled and no one wins, the game

ends in a draw.

Hands-On Exercise Try improving the Tic-Tac-Toe game

with these additional features:

1. Enhance input validation to prevent invalid

inputs.

2. Allow a player vs. computer mode with AI

moves.

3. Improve user interface using a GUI library

like Tkinter .

4. Display the winning move visually for better

clarity.

5. Track game history and store match results.

Conclusion This Tic-Tac-Toe game project introduces Python

concepts such as 2D lists, loops, and conditionals. By

expanding this project, developers can create more

interactive and visually appealing board games.

Chapter 16: Email Slicer

(Extract Username from Email)
Overview An Email Slicer is a simple yet useful tool that

extracts the username and domain from an email address.

This project enhances understanding of string manipulation,

user input handling, and string slicing in Python.

This chapter covers the step-by-step implementation of an

Email Slicer, including handling user input, extracting the

username and domain, and displaying the results.

Key Concepts of Email Slicer in Python

String Manipulation:

Using string methods like split() and

slicing

Extracting specific parts of a string

User Input Handling:

Accepting an email address from the user

Validating the input format

Output Formatting:

Displaying extracted username and

domain clearly

Email Slicing Table

Email Address Username Domain

john@example.com john example.com

alice@company.org alice company.org

user123@test.net user123 test.net

Basic Rules for Email Slicer in Python

Rule Correct Example

Use split('@') to

separate parts
username, domain = email.split('@')

Validate email

format

if '@' in email and '.' in

email.split('@')[1]:

mailto:john@example.com
mailto:alice@company.org
mailto:user123@test.net

Display extracted

parts

print(f"Username: {username},

Domain: {domain}")

Syntax Table

S

L

Concep

t
Syntax/Example Description

1
Get user

input

email =

input("Enter your

email: ")

Takes email

address as input

2
Split

email

username, domain

= email.split('@')

Splits the email

into username and

domain

3
Display

result

print(f"Username:

{username},

Domain:

{domain}")

Prints extracted

username and

domain

Real-Life Project: Email Slicer

Project Code:

1. def email_slicer(email):

2. if "@" in email and '.' in email.split('@')[1]:

3. username, domain = email.split('@')

4. return username, domain

5. else:

6. return None, None

7. email = input("Enter your email address: ")

8. username, domain = email_slicer(email)

9. if username and domain:

10. print(f"Username: {username}\nDomain: {domain}")

11. else:

12. print("Invalid email format! Please enter a valid

email.")

Project Code Explanation Table

Lin

e
Code Section Description

1
def

email_slicer(email):

Defines a function to

extract the username

and domain from an

email.

2
if "@" in email and '.'

in email.split('@')[1]:

Checks if the email

contains '@' and at

least one '.' after '@' to

validate format.

3
username, domain =

email.split('@')

Splits the email into

username and domain

using '@' as a

separator.

4
return username,

domain

Returns the extracted

username and domain.

5-6
else: return None,

None

Returns None values if

the email format is

invalid.

7

email = input("Enter

your email address:

")

Prompts the user to

input an email address.

8
username, domain =

email_slicer(email)

Calls the function and

stores the extracted

username and domain.

9
if username and

domain:

Checks if the function

returned valid extracted

values.

10
`print(f"Username:

{username}

11-

12

else: print("Invalid

email format! Please

enter a valid email.")

Displays an error

message if the email

format is invalid.

Expected Results

The program asks the user to enter an email

address.

It extracts and displays the username and domain.

If the email format is invalid, an error message is

displayed.

Hands-On Exercise Try improving the Email Slicer with

these additional features:

1. Allow case-insensitive input handling.

2. Validate email using regex for stricter format

checking.

3. Provide domain categorization, such as

personal or corporate emails.

4. Create a GUI version using Tkinter for better

user experience.

5. Enhance output formatting with additional

user details.

Chapter 17: Countdown Timer

Overview A countdown timer is a simple but useful

application that counts down from a given time and notifies

the user when the time reaches zero. This project enhances

understanding of loops, time-based execution, and user

input handling in Python.

This chapter covers the step-by-step implementation of a

countdown timer, handling user input, implementing a

countdown loop, and displaying the remaining time

dynamically.

Key Concepts of Countdown Timer in Python

Time Handling:

Using the time module to introduce

delays

Tracking elapsed time effectively

User Input Handling:

Taking user input for countdown duration

Validating user input

Loops and Conditional Statements:

Using a while loop to decrement the

timer

Printing the remaining time dynamically

Countdown Timer Functionality Table

Feature Description

Set Timer User inputs the countdown time in seconds

Start

Countdown
Displays remaining time every second

End

Notification

Prints a message when countdown reaches

zero

Basic Rules for Countdown Timer in Python

Rule Correct Example

Use time.sleep(1) to time.sleep(1)

delay execution

Convert user input to

integer

seconds = int(input("Enter time

in seconds: "))

Use a loop to

decrement the timer
while seconds > 0:

Syntax Table

S

L
Concept Syntax/Example Description

1

Import

time

module

import time

Enables time-

based

operations

2
Get user

input

seconds =

int(input("Enter

time in seconds: "))

Takes input for

countdown

duration

3
Loop for

countdown
while seconds > 0:

Runs until the

timer reaches

zero

4

Print

remaining

time

print(f"Time left:

{seconds}s")

Displays

countdown time

dynamically

5
Pause for

1 second
time.sleep(1)

Delays

execution by 1

second

Real-Life Project: Countdown Timer

Project Code:

1. import time

2. seconds = int(input("Enter countdown time in seconds:

"))

3. while seconds > 0:

4. print(f"Time left: {seconds}s", end="\r")

5. time.sleep(1)

6. seconds -= 1

7. print("Time's up!")

Project Code Explanation Table

Lin

e
Code Section Description

1 import time
Imports the time module

to use sleep functionality.

2
seconds = int(input("Enter

countdown time in seconds: "))

Takes user input for

countdown duration and

converts it to an integer.

3 while seconds > 0:

Starts a loop that runs

until the timer reaches

zero.

4
print(f"Time left:

{seconds}s", end="\r")

Displays the remaining

time on the same line

dynamically.

5 time.sleep(1)

Delays execution for one

second to simulate

countdown behavior.

6 seconds -= 1
Decrements the

countdown by one second.

7 print("Time's up!")
Prints a message when the

timer reaches zero.

Expected Results

The program asks the user to enter the

countdown duration.

It continuously updates and displays the

remaining time.

When the countdown reaches zero, it prints

"Time's up!".

Hands-On Exercise Try improving the countdown timer

with these additional features:

1. Add a sound alert when the countdown finishes.

2. Display a graphical progress bar using tqdm .

3. Allow pausing and resuming the countdown

timer.

4. Convert seconds to minutes and seconds for

better readability.

5. Create a GUI version using Tkinter for better

user interaction.

Conclusion This countdown timer project introduces Python

concepts such as loops, time handling, and user input

validation. By expanding this project, developers can create

more advanced time-tracking applications with improved

features.

Chapter 18: Simple Chatbot

Overview A simple chatbot is an interactive program that

responds to user input based on predefined rules. This

project helps in understanding string handling, conditional

statements, and basic artificial intelligence concepts in

Python.

This chapter covers the step-by-step implementation of a

chatbot, handling user input, responding with predefined

messages, and improving user interaction.

Key Concepts of Simple Chatbot in Python

User Input Handling:

Using input() to receive user messages

Converting input to lowercase for better

matching

Conditional Logic for Responses:

Using if-elif-else to respond to user

queries

Using dictionaries for improved response

handling

Loop for Continuous Interaction:

Using a while loop to keep the chatbot

running

Allowing exit commands to terminate the

session

Chatbot Interaction Table

User

Input
Chatbot Response

"Hello" "Hi! How can I help you?"

"How are

you?"
"I'm just a chatbot, but I'm doing great!"

"What is

Python?"

"Python is a programming language used for

various applications."

"Bye" "Goodbye! Have a great day!"

Basic Rules for Simple Chatbot in Python

Rule Correct Example

Convert user input to

lowercase
user_input = input().lower()

Use if-elif-else to handle

responses

if user_input == "hello":

print("Hi!")

Allow exit commands to

stop the bot
if user_input == "bye": break

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

user_input =

input("You: ")

Takes input

from the user

2

Convert

input to

lowercase

user_input =

user_input.lower()

Ensures case-

insensitive

matching

3
Define

responses

responses = {"hello":

"Hi!", "bye":

"Goodbye!"}

Stores

predefined

responses

4

Loop for

interactio

n

while True:

Runs the

chatbot

continuously

5
Display

response

print(f"Chatbot:

{response}")

Prints the

chatbot’s

response

Real-Life Project: Simple Chatbot

Project Code:

1. responses = {

2. "hello": "Hi! How can I help you?",

3. "how are you": "I'm just a chatbot, but I'm doing

great!",

4. "what is python": "Python is a programming language

used for various applications.",

5. "bye": "Goodbye! Have a great day!"

6. }

7. while True:

8. user_input = input("You: ").lower()

9. if user_input in responses:

10. print(f"Chatbot: {responses[user_input]}")

11. if user_input == "bye":

12. break

13. else:

14. print("Chatbot: I'm sorry, I don't understand that.")

Project Code Explanation Table

Lin

e
Code Section Description

1-6 responses = {...}
Defines a dictionary with

predefined responses.

7 while True:
Starts an infinite loop for

chatbot interaction.

8
user_input = input("You:

").lower()

Takes user input and

converts it to lowercase.

9-

10
if user_input in responses:

Checks if user input

matches any predefined

response.

11-

12

if user_input == "bye":

break

Ends the chatbot session

when "bye" is entered.

13-

14

else: print("I'm sorry, I

don't understand that.")

Handles unknown inputs

with a default message.

Expected Results

The chatbot greets the user when they say

"hello".

It provides responses based on predefined

queries.

It informs the user if it doesn’t understand a

query.

The chatbot terminates when the user types

"bye".

Hands-On Exercise Try improving the chatbot with these

additional features:

1. Expand the response dictionary to cover more

queries.

2. Use NLP techniques with the nltk library for

smarter responses.

3. Integrate an API to fetch real-time information

(e.g., weather, news).

4. Implement a GUI version using Tkinter for

better interaction.

5. Allow user-defined commands to customize

chatbot responses.

Conclusion This Simple Chatbot project introduces Python

concepts such as string handling, loops, and conditional

logic. By expanding this project, developers can create more

intelligent and responsive chatbot systems.

Chapter 19: Birthday Reminder

App
Overview A Birthday Reminder App is a useful tool that

stores and tracks birthdays, notifying users when an

upcoming birthday is near. This project enhances knowledge

of data storage, date handling, and automation in Python.

This chapter covers the step-by-step implementation of a

Birthday Reminder App, handling user input, storing

birthdays in a dictionary, checking for upcoming birthdays,

and displaying reminders.

Key Concepts of Birthday Reminder App in Python

Date Handling:

Using the datetime module to fetch the

current date

Comparing stored birthdays with the

current date

Data Storage and Retrieval:

Storing names and birthdays in a

dictionary or JSON file

Retrieving and displaying upcoming

birthdays

Notification Mechanism:

Printing reminders in the console

Sending email or desktop notifications

(optional)

Birthday Data Table

Name Birthday

John 1992-03-15

Alice 1987-07-10

Bob 1995-12-25

Emma 1999-05-02

Basic Rules for Birthday Reminder App in Python

Rule Correct Example

Store birthdays

in a dictionary
birthdays = {"John": "1992-03-15"}

Convert date

format properly

datetime.strptime(birthday, "%Y-%m-

%d")

Check for

upcoming

birthdays

if birthday_day == today_day and

birthday_month == today_month:

Syntax Table

S

L
Concept Syntax/Example Description

1

Import

datetime

module

import datetime

Enables date-

based

operations

2

Store

birthday

data

birthdays = {"John":

"1992-03-15"}

Saves name

and birthday in

a dictionary

3

Get

current

date

today =

datetime.date.today()

Fetches

today's date

4
Compare

dates

if

birthday_date.month

== today.month:

Checks if a

birthday

matches

today’s month

5
Display

reminder

print(f"Reminder:

{name}'s birthday is

today!")

Prints the

reminder

message

Real-Life Project: Birthday Reminder App

Project Code:

1. import datetime

2. birthdays = {

3. "John": "1992-03-15",

4. "Alice": "1987-07-10",

5. "Bob": "1995-12-25",

6. "Emma": "1999-05-02"

7. }

8. today = datetime.date.today()

9. today_month = today.month

10. today_day = today.day

11. for name, birthday in birthdays.items():

12. birthday_date = datetime.datetime.strptime(birthday,

"%Y-%m-%d").date()

13. if birthday_date.month == today_month and

birthday_date.day == today_day:

14. print(f"Reminder: {name}'s birthday is today!")

15. elif birthday_date.month == today_month:

16. print(f"Upcoming: {name}'s birthday is on

{birthday_date.day}-{birthday_date.month}")

Project Code Explanation Table

Li

ne
Code Section

Descripti

on

1 import datetime

Imports

the

datetime

module to

handle

date

operations.

2-

7
birthdays = {...}

Defines a

dictionary

storing

names and

their

respective

birthdays.

8 today = datetime.date.today() Retrieves

today’s

date from

the

system.

9 today_month = today.month

Extracts

the current

month

from

today’s

date.

10 today_day = today.day

Extracts

the current

day from

today’s

date.

11
for name, birthday in

birthdays.items():

Iterates

through all

the stored

birthdays.

12

birthday_date =

datetime.datetime.strptime(birthda

y, "%Y-%m-%d").date()

Converts

the stored

birthday

string into

a date

object.

13

if birthday_date.month ==

today_month and

birthday_date.day == today_day:

Checks if

today

matches a

stored

birthday.

14
print(f"Reminder: {name}'s

birthday is today!")

Prints a

reminder if

today is

someone's

birthday.

15
elif birthday_date.month ==

today_month:

Checks if a

birthday is

upcoming

within the

same

month.

16

print(f"Upcoming: {name}'s

birthday is on {birthday_date.day}-

{birthday_date.month}")

Prints an

upcoming

birthday

reminder.

Expected Results

The program checks for any birthdays today and

prints a reminder.

It displays upcoming birthdays within the same

month.

Users are notified about birthdays that need

attention.

Hands-On Exercise Try improving the Birthday Reminder

App with these additional features:

1. Allow users to add new birthdays

dynamically.

2. Store birthdays in a file (JSON or CSV) for

persistent storage.

3. Send email notifications using the smtplib

module.

4. Integrate a GUI using Tkinter for better user

experience.

5. Enhance date validation to prevent incorrect

inputs.

Conclusion This Birthday Reminder App project introduces

Python concepts such as dictionary handling, date

manipulation, and user notifications. By expanding this

project, developers can create a more interactive and useful

birthday tracking system.

Chapter 20: Basic Expense

Tracker
Overview An Expense Tracker is a practical application that

allows users to log their daily expenses and track spending

habits. This project enhances knowledge of file handling,

data storage, and user input processing in Python.

This chapter covers the step-by-step implementation of an

Expense Tracker, including user input handling, data storage

in a CSV file, and displaying expense reports.

Key Concepts of Expense Tracker in Python

Data Handling:

Using lists and dictionaries to store

expenses

Writing and reading data from a CSV file

User Input Processing:

Taking user input for expense details

Validating and formatting input data

Report Generation:

Displaying total expenses per category

Summarizing daily or monthly spending

Expense Data Table

Date Category Amount Description

2024-03-15 Food 12.50 Lunch at cafe

2024-03-16 Transport 5.00 Bus fare

2024-03-16 Shopping 25.00 Grocery shopping

Basic Rules for Expense Tracker in Python

Rule Correct Example

Store expenses

in a list of

dictionaries

expenses = [{"date": "2024-03-15",

"category": "Food", "amount": 12.50}]

Validate input if isinstance(amount, float) and amount

before storing > 0:

Write expenses

to a CSV file

csv.writer(file).writerow([date, category,

amount, description])

Syntax Table

S

L

Conce

pt
Syntax/Example Description

1

Import

CSV

module

import csv

Enables

reading/writin

g to CSV files

2

Get

user

input

amount =

float(input("Enter

amount: "))

Takes

expense

details from

the user

3

Store

expens

es

expenses.append({"date

": date, "category":

category, "amount":

amount})

Saves

expense data

in a list

4
Write to

CSV file

with

open("expenses.csv",

"a") as file:

Appends

expense data

to a CSV file

5

Read

from

CSV file

csv.reader(file)

Reads stored

expenses

from the file

Real-Life Project: Basic Expense Tracker

Project Code:

1. import csv

2. from datetime import datetime

3. def add_expense(date, category, amount, description):

4. with open("expenses.csv", "a", newline="") as file:

5. writer = csv.writer(file)

6. writer.writerow([date, category, amount,

description])

7. def view_expenses():

8. try:

9. with open("expenses.csv", "r") as file:

10. reader = csv.reader(file)

11. for row in reader:

12. print(row)

13. except FileNotFoundError:

14. print("No expense records found.")

15. date = datetime.today().strftime("%Y-%m-%d")

16. category = input("Enter expense category: ")

17. amount = float(input("Enter amount: "))

18. description = input("Enter description: ")

19. add_expense(date, category, amount, description)

20. print("Expense added successfully!")

21. print("Here are your recorded expenses:")

22. view_expenses()

Project Code Explanation Table

Lin

e
Code Section Description

1 import csv

Imports the CSV

module for reading

and writing CSV files.

2
from datetime import

datetime

Imports the

datetime module to

handle date

operations.

3-6

def add_expense(date,

category, amount,

description):

Defines a function to

add an expense

entry to the CSV file.

4
with open("expenses.csv", "a",

newline="") as file:

Opens the CSV file in

append mode to add

new expense

records.

5 writer = csv.writer(file)

Creates a CSV writer

object to write data

into the file.

6 writer.writerow([date,

category, amount,

description])

Writes a row

containing the

expense details into

the file.

7-

14
def view_expenses():

Defines a function to

display stored

expenses.

9-

10

with open("expenses.csv", "r")

as file:

Opens the CSV file in

read mode to display

existing records.

10-

12
reader = csv.reader(file)

Reads the contents

of the CSV file.

11 for row in reader:
Iterates over each

row in the CSV file.

12 print(row)
Prints the expense

entry row-by-row.

13-

14
except FileNotFoundError:

Handles errors when

the CSV file does not

exist.

14
print("No expense records

found.")

Displays a message

if no expense

records exist.

15

date =

datetime.today().strftime("%Y-

%m-%d")

Retrieves today's

date and formats it

as YYYY-MM-DD.

16
category = input("Enter

expense category: ")

Prompts the user to

input the category of

the expense.

17
amount = float(input("Enter

amount: "))

Takes user input for

expense amount and

converts it to a float.

18
description = input("Enter

description: ")

Takes user input for

expense description.

19
add_expense(date, category,

amount, description)

Calls the function to

add the new

expense to the CSV

file.

20
print("Expense added

successfully!")

Displays a

confirmation

message after

adding the expense.

21
print("Here are your recorded

expenses:")

Prints a message

before displaying

stored expenses.

22 view_expenses()

Calls the function to

display all stored

expenses.

Expected Results

The program asks the user to input an expense

category, amount, and description.

The expense details are saved into a CSV file.

The program reads and displays all stored

expenses.

If no expenses are found, it prints an appropriate

message.

Hands-On Exercise Try improving the Expense Tracker

with these additional features:

1. Allow filtering by date range to track monthly

expenses.

2. Categorize expenses and show total spending

per category.

3. Use a database (SQLite) instead of a CSV file

for better data management.

4. Add a graphical user interface (GUI) using

Tkinter .

5. Generate summary reports with total expenses

and graphs.

Conclusion This Basic Expense Tracker project introduces

Python concepts such as file handling, user input validation,

and report generation. By expanding this project,

developers can create more advanced financial tracking

applications with greater functionality.

Chapter 21: Fibonacci Series

Generator
Overview A Fibonacci Series Generator is a simple

mathematical tool that generates a sequence where each

number is the sum of the two preceding ones. This project

helps in understanding recursion, loops, and mathematical

logic in Python.

This chapter covers the step-by-step implementation of a

Fibonacci Series Generator, handling user input, generating

the sequence using loops and recursion, and displaying the

results.

Key Concepts of Fibonacci Series Generator in Python

Mathematical Computation:

Fibonacci formula: F(n) = F(n-1) + F(n-2)

Using loops and recursion to generate

the series

User Input Handling:

Taking user input for the number of terms

Validating input to ensure it is a positive

integer

Efficient Computation:

Using iterative loops for performance

optimization

Implementing memoization for recursive

functions

Fibonacci Series Table

N (Term) Fibonacci Number

1 0

2 1

3 1

4 2

5 3

6 5

7 8

Basic Rules for Fibonacci Series Generator in Python

Rule Correct Example

Use recursion for

Fibonacci sequence

def fibonacci(n): return fibonacci(n-

1) + fibonacci(n-2)

Use iteration for

better efficiency

for i in range(n): fib.append(fib[i-1]

+ fib[i-2])

Validate user input if n < 0: print("Invalid input")

Syntax Table

S

L

Concep

t
Syntax/Example Description

1

Define

recursiv

e

function

def fibonacci(n):

Defines a

function to

compute

Fibonacci

numbers

recursively

2

Define

loop-

based

function

def

fibonacci_iterative(n):

Defines a

function to

compute

Fibonacci

numbers using

iteration

3
Get user

input

n = int(input("Enter

number of terms: "))

Takes user

input for the

number of

terms

4
Validate

input
if n < 0:

Ensures the

input is non-

negative

5

Display

sequenc

e

print(fibonacci(n))

Prints the

Fibonacci

sequence

Real-Life Project: Fibonacci Series Generator

Project Code:

1. def fibonacci_recursive(n):

2. if n <= 0:

3. return "Invalid input"

4. elif n == 1:

5. return 0

6. elif n == 2:

7. return 1

8. else:

9. return fibonacci_recursive(n-1) +

fibonacci_recursive(n-2)

10. def fibonacci_iterative(n):

11. if n <= 0:

12. return "Invalid input"

13. fib_series = [0, 1]

14. for i in range(2, n):

15. fib_series.append(fib_series[i-1] + fib_series[i-2])

16. return fib_series[:n]

17. n = int(input("Enter the number of terms: "))

18. print("Fibonacci Series (Iterative):",

fibonacci_iterative(n))

19. print("Nth Fibonacci Number (Recursive):",

fibonacci_recursive(n))

Project Code Explanation Table

Lin

e
Code Section Description

1-9 def fibonacci_recursive(n):

Defines a recursive

function to compute

Fibonacci numbers.

2-3 if n <= 0:

Checks if the input is

invalid (negative or

zero).

4-5 elif n == 1: Returns 0 for the first

term.

6-7 elif n == 2:
Returns 1 for the second

term.

8-9

else: return

fibonacci_recursive(n-1) +

fibonacci_recursive(n-2)

Computes Fibonacci

using recursion.

10-

16
def fibonacci_iterative(n):

Defines an iterative

function to generate

Fibonacci numbers.

11-

12
if n <= 0: Checks for invalid input.

13 fib_series = [0, 1]
Initializes the Fibonacci

sequence.

14-

15
for i in range(2, n):

Computes Fibonacci

numbers iteratively and

appends them to the list.

16 return fib_series[:n]
Returns the Fibonacci

series up to n terms.

17
n = int(input("Enter the

number of terms: "))
Takes user input.

18

print("Fibonacci Series

(Iterative):",

fibonacci_iterative(n))

Displays the Fibonacci

series generated using

iteration.

19

print("Nth Fibonacci

Number (Recursive):",

fibonacci_recursive(n))

Displays the Nth

Fibonacci number using

recursion.

Expected Results

The program asks the user for the number of

terms.

It generates and prints the Fibonacci series using

iteration.

It computes and prints the Nth Fibonacci number

using recursion.

If the user enters an invalid number, an error

message is displayed.

Hands-On Exercise Try improving the Fibonacci Series

Generator with these additional features:

1. Optimize recursive calls using memoization

with a dictionary.

2. Allow the user to choose between recursion

and iteration for generating the series.

3. Display a graphical representation of the

Fibonacci sequence using Matplotlib.

4. Generate Fibonacci numbers for large values

efficiently using an optimized approach.

5. Create a GUI version using Tkinter for better

user interaction.

Conclusion This Fibonacci Series Generator project

introduces Python concepts such as recursion, iteration, and

mathematical logic. By expanding this project, developers

can build more optimized and interactive mathematical

applications.

Chapter 22: Prime Number

Checker
Overview A Prime Number Checker is a useful tool that

determines whether a given number is prime. This project

helps in understanding loops, conditional statements, and

mathematical logic in Python.

This chapter covers the step-by-step implementation of a

Prime Number Checker, handling user input, performing

divisibility tests, and displaying results.

Key Concepts of Prime Number Checker in Python

Mathematical Computation:

A prime number is only divisible by 1 and

itself.

The smallest prime number is 2.

User Input Handling:

Taking user input to check for primality

Validating input to ensure it is a positive

integer

Efficient Computation:

Using loops to check divisibility up to √n

for optimization

Prime Number Table

Number Prime?

2 Yes

3 Yes

4 No

5 Yes

6 No

7 Yes

8 No

9 No

10 No

Basic Rules for Prime Number Checker in Python

Rule Correct Example

Check divisibility from

2 to √n
if n % i == 0: return False

Validate user input if n < 2: print("Not prime")

Optimize loop for

efficiency
for i in range(2, int(n**0.5) + 1):

Syntax Table

S

L
Concept Syntax/Example Description

1
Define

function
def is_prime(n):

Defines a

function to check

primality

2
Validate

input
if n < 2:

Ensures the

number is

greater than 1

3

Loop for

divisibility

test

for i in range(2,

int(n**0.5) + 1):

Iterates up to the

square root of n

4

Return

prime

status

return True
Returns True if

n is prime

5
Display

result
print(is_prime(n)) Prints the result

Real-Life Project: Prime Number Checker

Project Code:

1. def is_prime(n):

2. if n < 2:

3. return False

4. for i in range(2, int(n**0.5) + 1):

5. if n % i == 0:

6. return False

7. return True

8. number = int(input("Enter a number: "))

9. if is_prime(number):

10. print(f"{number} is a prime number.")

11. else:

12. print(f"{number} is not a prime number.")

Project Code Explanation Table

Lin

e
Code Section Description

1-7 def is_prime(n):
Defines a function to check

if a number is prime.

2-3 if n < 2:
Returns False for numbers

less than 2.

4-6
for i in range(2,

int(n**0.5) + 1):

Iterates up to the square

root of n to check

divisibility.

5-6 if n % i == 0:
Returns False if n is

divisible by i .

7 return True
Returns True if no divisors

were found.

8

number =

int(input("Enter a

number: "))

Takes user input.

9-10 if is_prime(number):
Checks if the number is

prime and prints the result.

11-

12
else:

Prints a message if the

number is not prime.

Expected Results

The program asks the user to enter a number.

It checks if the number is prime using the

function.

It prints whether the number is prime or not.

If the user enters a number less than 2, it prints

"Not a prime number."

Hands-On Exercise Try improving the Prime Number

Checker with these additional features:

1. Allow users to check multiple numbers in a

loop.

2. Generate a list of prime numbers within a

given range.

3. Use a caching mechanism (memoization) to

speed up repeated checks.

4. Create a graphical user interface (GUI) using

Tkinter .

5. Implement an option to check large prime

numbers using the Miller-Rabin primality

test.

Conclusion This Prime Number Checker project introduces

Python concepts such as loops, mathematical logic, and

input validation. By expanding this project, developers can

create more efficient and interactive number validation

tools.

Chapter 23: Palindrome Checker

Overview A Palindrome Checker is a simple program that

determines whether a given string, number, or phrase reads

the same forward and backward. This project helps in

understanding string manipulation, loops, and conditional

logic in Python.

This chapter covers the step-by-step implementation of a

Palindrome Checker, handling user input, checking

palindromes using different methods, and displaying results.

Key Concepts of Palindrome Checker in Python

String Reversal:

Checking if a string is the same when

reversed

Using slicing and loops for reversal

User Input Handling:

Taking user input and removing spaces

and special characters

Converting input to lowercase for case

insensitivity

Efficient Computation:

Using slicing ([::-1]) for quick reversal

Using two-pointer technique for

efficiency

Palindrome Examples Table

Input Palindrome?

racecar Yes

madam Yes

hello No

121 Yes

123 No

A man, a plan, a canal, Panama Yes

Basic Rules for Palindrome Checker in Python

Rule Correct Example

Reverse the string using

slicing
if word == word[::-1]:

Ignore case sensitivity word.lower()

Remove spaces and

punctuation

re.sub(r'[^a-zA-Z0-9]', '',

word)

Syntax Table

S

L
Concept Syntax/Example Description

1
Reverse a

string
word[::-1]

Checks if the

reversed

string

matches the

original

2
Convert to

lowercase
word.lower()

Ensures case

insensitivity

3

Remove

spaces &

punctuation

re.sub(r'[^a-zA-Z0-

9]', '', word)

Removes non-

alphanumeric

characters

4
Get user

input

word = input("Enter

a word: ")

Takes input

from the user

5
Display

result

print("Palindrome" if

is_palindrome(word)

else "Not a

palindrome")

Prints the

result

Real-Life Project: Palindrome Checker

Project Code:

1. import re

2. def is_palindrome(word):

3. word = re.sub(r'[^a-zA-Z0-9]', '', word).lower()

4. return word == word[::-1]

5. word = input("Enter a word or phrase: ")

6. if is_palindrome(word):

7. print("Palindrome")

8. else:

9. print("Not a palindrome")

Project Code Explanation Table

Lin

e
Code Section Description

1 import re
Imports the re module for

regex operations.

2-4
def

is_palindrome(word):

Defines a function to check

if a word is a palindrome.

3

word = re.sub(r'[^a-

zA-Z0-9]', '',

word).lower()

Removes non-alphanumeric

characters and converts to

lowercase.

4
return word ==

word[::-1]

Compares the cleaned word

with its reversed version.

5
word = input("Enter a

word or phrase: ")
Takes user input.

6-7 if is_palindrome(word):

Checks if the word is a

palindrome and prints

"Palindrome" if true.

8-9
else: print("Not a

palindrome")

Prints "Not a palindrome" if

the word does not match its

reverse.

Expected Results

The program asks the user to enter a word or

phrase.

It processes the input by removing spaces and

punctuation.

It checks whether the cleaned input is the same

forward and backward.

It prints whether the input is a palindrome or not.

Hands-On Exercise Try improving the Palindrome Checker

with these additional features:

1. Allow users to check numbers for

palindrome properties.

2. Optimize for long strings using the two-

pointer method.

3. Implement a graphical user interface (GUI)

using Tkinter.

4. Support batch checking of multiple words or

phrases.

5. Enhance input handling for different

languages and scripts.

Conclusion This Palindrome Checker project introduces

Python concepts such as string manipulation, loops, and

input validation. By expanding this project, developers can

create more advanced tools for text analysis and pattern

recognition.

Chapter 24: Leap Year Checker

Overview A Leap Year Checker is a program that

determines whether a given year is a leap year. A leap year

occurs every four years, except for years that are divisible

by 100 but not divisible by 400. This project helps in

understanding conditional logic, user input validation, and

mathematical operations in Python.

This chapter covers the step-by-step implementation of a

Leap Year Checker, handling user input, applying leap year

rules, and displaying results.

Key Concepts of Leap Year Checker in Python

Leap Year Rules:

A year is a leap year if it is divisible by 4.

However, if the year is divisible by 100, it

must also be divisible by 400.

User Input Handling:

Taking user input to check for leap year

validity.

Validating input to ensure it is a positive

integer.

Efficient Computation:

Using logical conditions (if-elif-else) to

check leap year rules.

Leap Year Table

Year Leap Year?

2000 Yes

2004 Yes

1900 No

2100 No

2024 Yes

2023 No

Basic Rules for Leap Year Checker in Python

Rule Correct Example

A year divisible by 4 is a leap

year
if year % 4 == 0:

A year divisible by 100 must

also be divisible by 400

if year % 100 == 0 and

year % 400 != 0:

Validate input before

processing

if year < 0: print("Invalid

input")

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

year =

int(input("Enter a

year: "))

Takes user input

for a year.

2

Check

divisibilit

y

if year % 4 == 0:

Checks if the

year is divisible

by 4.

3

Validate

leap year

rules

if year % 100 == 0

and year % 400 !=

0:

Ensures correct

leap year

conditions.

4

Return

leap year

status

return True if leap

else False

Returns True if

the year is a leap

year.

5
Display

result

print(f"{year} is a

leap year")

Prints the leap

year status.

Real-Life Project: Leap Year Checker

Project Code:

1. def is_leap_year(year):

2. if year < 0:

3. return "Invalid input"

4. if year % 4 == 0:

5. if year % 100 == 0:

6. if year % 400 == 0:

7. return True

8. else:

9. return False

10. return True

11. return False

12. year = int(input("Enter a year: "))

13. if is_leap_year(year):

14. print(f"{year} is a leap year.")

15. else:

16. print(f"{year} is not a leap year.")

Project Code Explanation Table

Lin

e
Code Section Description

1

def

is_leap_year(year)

:

Defines a function to check if a

given year is a leap year.

2 if year < 0:

Checks if the input is a negative

number and returns an error

message.

3
return "Invalid

input"

Returns an error message for

invalid inputs.

4 if year % 4 == 0:

Checks if the year is divisible by

4, which is the first rule for a leap

year.

5
if year % 100 ==

0:

Checks if the year is divisible by

100, meaning it might not be a

leap year unless divisible by 400.

6
if year % 400 ==

0:

Ensures that years divisible by

100 must also be divisible by 400

to be leap years.

7 return True
Returns True for leap years that

meet all conditions.

8 else:
Handles cases where a year fails

the 400 divisibility check.

9 return False Returns False for years divisible

by 100 but not by 400.

10 return True
If a year is divisible by 4 but not

by 100, it is a leap year.

11 return False
If a year is not divisible by 4, it is

not a leap year.

12

year =

int(input("Enter a

year: "))

Takes user input and converts it

to an integer.

13

if

is_leap_year(year)

:

Calls the function and checks if

the given year is a leap year.

14
print(f"{year} is a

leap year.")

Prints a message confirming that

the year is a leap year.

15 else:
Handles cases where the function

returns False .

16
print(f"{year} is

not a leap year.")

Prints a message stating that the

year is not a leap year.

Expected Results

The program asks the user to enter a year.

It checks if the year follows leap year rules.

It prints whether the year is a leap year or not.

If the user enters a negative number, it prints

"Invalid input."

Hands-On Exercise Try improving the Leap Year Checker

with these additional features:

1. Allow users to check multiple years in a

loop.

2. Check a range of years and display all leap

years within that range.

3. Create a GUI version using Tkinter for

better user interaction.

4. Enhance input validation to prevent

incorrect inputs (e.g., non-numeric values).

5. Integrate the program into a calendar

application to highlight leap years.

Conclusion This Leap Year Checker project introduces

Python concepts such as conditional logic, mathematical

operations, and input validation. By expanding this project,

developers can create more advanced date-related

applications.

Chapter 25: Random Password

Generator
Overview A Random Password Generator is a useful

application that generates secure and random passwords

with a combination of letters, numbers, and special

characters. This project helps in understanding string

manipulation, randomization, and user input handling in

Python.

This chapter covers the step-by-step implementation of a

Random Password Generator, handling user input,

generating passwords with various character sets, and

displaying results.

Key Concepts of Random Password Generator in

Python

Randomization:

Using the random module to generate

random characters.

Shuffling characters for better

randomness.

User Input Handling:

Taking input for password length.

Allowing users to specify character types

(letters, digits, special characters).

Security Considerations:

Ensuring a mix of uppercase, lowercase,

digits, and symbols.

Avoiding weak passwords.

Password Strength Guidelines

Length Strength

< 6 Weak

6-10 Medium

> 10 Strong

Basic Rules for Random Password Generator in

Python

Rule Correct Example

Use

random.choices() for

random selection

random.choices(string.ascii_letters

, k=length)

Ensure password

contains letters,

digits, and symbols

random.choice(string.punctuation)

Shuffle characters for

randomness
random.shuffle(password_list)

Syntax Table

S

L

Conce

pt
Syntax/Example

Descripti

on

1

Import

rando

m

module

import random

Enables

random

selection

of

characters

2

Import

string

module

import string

Provides

predefined

character

sets

3

Get

user

input

length = int(input("Enter

password length: "))

Takes

password

length as

input

4

Genera

te

passwo

rd

password =

''.join(random.choices(characte

rs, k=length))

Generates

a random

password

of given

length

5 Display

passwo

print(f"Generated Password:

{password}")

Prints the

generated

rd password

Real-Life Project: Random Password Generator

Project Code:

1. import random

2. import string

3. def generate_password(length=8):

4. if length < 6:

5. return "Password too short! Choose at least 6

characters."

6. characters = string.ascii_letters + string.digits +

string.punctuation

7. password = ''.join(random.choices(characters,

k=length))

8. return password

9. length = int(input("Enter the desired password length: "))

10. print("Generated Password:",

generate_password(length))

Project Code Explanation Table

Lin

e
Code Section Description

1-2 import random, string

Imports the

necessary

modules for

password

generation.

3-8
def

generate_password(length=8):

Defines a

function to

generate a

random

password.

4-5 if length < 6: Ensures

password length

is at least 6

characters for

security.

6
characters = string.ascii_letters +

string.digits + string.punctuation

Defines a pool of

characters for

password

generation.

7

password =

''.join(random.choices(characters,

k=length))

Randomly selects

characters and

forms the

password.

8 return password

Returns the

generated

password.

9
length = int(input("Enter the

desired password length: "))

Takes user input

for password

length.

10
print("Generated Password:",

generate_password(length))

Calls the function

and prints the

generated

password.

Expected Results

The program asks the user to enter a password

length.

It generates a password containing letters, digits,

and symbols.

The password is displayed to the user.

If the user enters a length less than 6, it prompts

for a longer password.

Hands-On Exercise Try improving the Random Password

Generator with these additional features:

1. Allow users to specify character types (e.g.,

only letters, only digits).

2. Enhance security by ensuring at least one of

each character type is included.

3. Provide an option to copy the password to

the clipboard using pyperclip .

4. Create a GUI version using Tkinter for

better user interaction.

5. Integrate password strength analysis to rate

the generated password.

Conclusion This Random Password Generator project

introduces Python concepts such as randomization, string

handling, and input validation. By expanding this project,

developers can create more secure and user-friendly

password management tools.

Chapter 26: Dice Roller

Simulator
Overview A Dice Roller Simulator is a simple application

that mimics rolling a physical dice. This project helps in

understanding randomization, loops, and user interaction in

Python.

This chapter covers the step-by-step implementation of a

Dice Roller Simulator, handling user input, generating

random dice values, and displaying results.

Key Concepts of Dice Roller Simulator in Python

Randomization:

Using the random module to generate

random dice values.

Simulating different types of dice rolls

(e.g., 6-sided, 12-sided).

User Input Handling:

Allowing the user to roll multiple times.

Giving the option to roll different dice

types.

Looping for Repeated Rolls:

Using a while loop to allow continuous

rolling.

Providing an exit option to stop rolling.

Dice Rolling Outcomes Table

Dice Type Possible Outcomes

6-sided 1, 2, 3, 4, 5, 6

12-sided 1-12

20-sided 1-20

Basic Rules for Dice Roller Simulator in Python

Rule Correct Example

Use random.randint(1, 6) to roll = random.randint(1, 6)

simulate dice rolls

Allow multiple rolls using a

loop
while user_wants_to_roll:

Provide user input for dice

type

sides = int(input("Enter

dice sides: "))

Syntax Table

S

L
Concept Syntax/Example Description

1

Import

random

module

import random

Enables random

number

generation

2

Generate

random

dice roll

roll =

random.randint(1,

6)

Simulates

rolling a 6-sided

dice

3

Get user

input for

dice type

sides =

int(input("Enter

dice sides: "))

Allows user to

choose dice

type

4

Loop for

multiple

rolls

while True:

Continues

rolling until user

exits

5
Display

result

print(f"You rolled a

{roll}")

Prints the dice

roll outcome

Real-Life Project: Dice Roller Simulator

Project Code:

1. import random

2. def roll_dice(sides=6):

3. return random.randint(1, sides)

4. while True:

5. sides = int(input("Enter the number of sides on the

dice (or 0 to exit): "))

6. if sides == 0:

7. print("Thanks for playing!")

8. break

9. roll = roll_dice(sides)

10. print(f"You rolled a {roll}!")

Project Code Explanation Table

Lin

e
Code Section Description

1 import random
Imports the random module to

generate random numbers.

2-3
def

roll_dice(sides=6):

Defines a function to roll a dice

with a given number of sides.

3

return

random.randint(1,

sides)

Generates a random roll

between 1 and the specified

number of sides.

4 while True:
Creates an infinite loop to allow

continuous rolling.

5
sides =

int(input(...))

Takes user input for the number

of dice sides.

6-8 if sides == 0:
Checks if the user wants to exit

the program.

9
roll =

roll_dice(sides)

Calls the function to roll the dice

with the chosen number of

sides.

10
print(f"You rolled a

{roll}!")

Displays the result of the dice

roll.

Expected Results

The program asks the user for the number of sides

on the dice.

It rolls the dice and displays the result.

The user can continue rolling or enter 0 to exit.

Hands-On Exercise Try improving the Dice Roller Simulator

with these additional features:

1. Allow rolling multiple dice at once and sum

the results.

2. Give users the option to roll special dice

(e.g., RPG dice: D4, D8, D12, D20).

3. Add a graphical interface using Tkinter .

4. Save roll history and statistics for the

session.

5. Introduce an animation to simulate rolling

for a more engaging experience.

Conclusion This Dice Roller Simulator project introduces

Python concepts such as randomization, loops, and user

input handling. By expanding this project, developers can

create more interactive and customizable dice simulation

applications.

Chapter 27: Multiplication Table

Generator
Overview A Multiplication Table Generator is a simple yet

useful program that displays the multiplication table for a

given number up to a specified range. This project enhances

understanding of loops, user input handling, and formatted

output in Python.

This chapter covers the step-by-step implementation of a

Multiplication Table Generator, handling user input, using

loops for calculations, and displaying well-formatted results.

Key Concepts of Multiplication Table Generator in

Python

Mathematical Computation:

Using loops to iterate through multipliers.

Displaying formatted multiplication

results.

User Input Handling:

Allowing users to input a number for

generating the table.

Setting a range for the multiplication

table.

Efficient Output Formatting:

Using f-strings to format table display

neatly.

Aligning numbers for better readability.

Multiplication Table Example

Number Multiplier Result

5 1 5

5 2 10

5 3 15

5 4 20

5 5 25

Basic Rules for Multiplication Table Generator in

Python

Rule Correct Example

Use a loop to iterate over

the range
for i in range(1, n+1):

Take user input for the

number and range

num = int(input("Enter a

number: "))

Display results using

formatted output

print(f"{num} x {i} = {num

* i}")

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

num =

int(input("Enter a

number: "))

Takes the base

number for the

table.

2

Define

table

range

limit =

int(input("Enter

range: "))

Takes input for the

upper limit of

multiplication.

3
Use a

loop

for i in range(1,

limit+1):

Iterates through

the multiplication

range.

4

Print

formatte

d output

print(f"{num} x

{i} = {num * i}")

Displays

multiplication

results.

Real-Life Project: Multiplication Table Generator

Project Code:

1. def generate_table(num, limit):

2. for i in range(1, limit + 1):

3. print(f"{num} x {i} = {num * i}")

4. number = int(input("Enter a number: "))

5. range_limit = int(input("Enter the range: "))

6. print(f"Multiplication Table for {number} up to

{range_limit}:")

7. generate_table(number, range_limit)

Project Code Explanation Table

Lin

e
Code Section Description

1-3
def generate_table(num,

limit):

Defines a function to

generate the

multiplication table.

2 for i in range(1, limit + 1):
Loops from 1 to the

specified range limit.

3
print(f"{num} x {i} = {num *

i}")

Prints each

multiplication result.

4
number = int(input("Enter a

number: "))

Takes user input for

the base number.

5
range_limit = int(input("Enter

the range: "))

Takes user input for

the multiplication

range.

6

print(f"Multiplication Table for

{number} up to

{range_limit}:")

Displays a header

before printing the

table.

7
generate_table(number,

range_limit)

Calls the function to

generate the table.

Expected Results

The program asks the user to enter a number and

a range.

It displays the multiplication table up to the

specified range.

The output is formatted neatly.

Hands-On Exercise Try improving the Multiplication Table

Generator with these additional features:

1. Allow users to generate tables for multiple

numbers at once.

2. Enhance formatting using tabular display for

readability.

3. Provide an option to save the table to a text

file.

4. Create a GUI version using Tkinter for

better interaction.

5. Add an option for reverse-order

multiplication tables.

Conclusion This Multiplication Table Generator project

introduces Python concepts such as loops, user input

handling, and formatted output. By expanding this project,

developers can create more advanced and user-friendly

table generators.

Chapter 28: Odd or Even

Number Checker
Overview An Odd or Even Number Checker is a simple

program that determines whether a given number is odd or

even. This project helps in understanding conditional

statements, modulus operations, and user input handling in

Python.

This chapter covers the step-by-step implementation of an

Odd or Even Number Checker, handling user input, applying

modulus operations, and displaying results.

Key Concepts of Odd or Even Number Checker in

Python

Mathematical Computation:

A number is even if divisible by 2 (num

% 2 == 0).

A number is odd if not divisible by 2

(num % 2 != 0).

User Input Handling:

Taking user input to check for odd or

even numbers.

Validating input to ensure it is an integer.

Conditional Statements:

Using if-else statements to determine

odd or even numbers.

Odd and Even Number Table

Number Even or Odd?

2 Even

7 Odd

10 Even

15 Odd

20 Even

Basic Rules for Odd or Even Number Checker in

Python

Rule Correct Example

A number is even if num % 2

== 0
if num % 2 == 0:

A number is odd if num % 2

!= 0
else:

Validate user input before

checking
if not isinstance(num, int):

Syntax Table

S

L

Concep

t
Syntax/Example Description

1
Get user

input

num =

int(input("Enter a

number: "))

Takes user input for

checking odd or

even.

2

Check

even

conditio

n

if num % 2 == 0:

Checks if the

number is divisible

by 2.

3

Check

odd

conditio

n

else:

Handles the case

where the number is

odd.

4
Print

results

print("Even") or

print("Odd")

Displays the result

to the user.

Real-Life Project: Odd or Even Number Checker

Project Code:

1. def check_odd_even(num):

2. if num % 2 == 0:

3. return "Even"

4. else:

5. return "Odd"

6. num = int(input("Enter a number: "))

7. print(f"The number {num} is {check_odd_even(num)}.")

Project Code Explanation Table

Lin

e
Code Section Description

1-5 def check_odd_even(num):

Defines a function to

check if a number is

odd or even.

2 if num % 2 == 0:
Checks if the number is

divisible by 2.

3 return "Even" Returns "Even" if the

number is divisible by

2.

4-5 else: return "Odd"

Returns "Odd" if the

number is not divisible

by 2.

6
num = int(input("Enter a

number: "))

Takes user input and

converts it to an

integer

.

7

print(f"The number {num}

is

{check_odd_even(num)}.")

Calls the function and

prints the result.

Expected Results

The program asks the user to enter a number.

It checks whether the number is even or odd.

It prints the result accordingly.

Hands-On Exercise Try improving the Odd or Even Number

Checker with these additional features:

1. Allow users to check multiple numbers in a

loop.

2. Validate user input to prevent errors if non-

numeric values are entered.

3. Provide a batch input option to check

multiple numbers at once.

4. Enhance the program with a graphical user

interface using Tkinter .

5. Extend the logic to check if a number is

prime along with even or odd classification.

Conclusion This Odd or Even Number Checker project

introduces Python concepts such as conditional statements,

mathematical operations, and input validation. By

expanding this project, developers can create more robust

number classification applications.

Chapter 29: Simple Voting

System
Overview A Simple Voting System allows users to cast

votes for predefined candidates and displays the results.

This project enhances understanding of dictionaries, loops,

user input handling, and data validation in Python.

This chapter covers the step-by-step implementation of a

Simple Voting System, including handling user input,

recording votes, and displaying election results.

Key Concepts of Simple Voting System in Python

Data Storage:

Using dictionaries to store candidate

names and vote counts.

User Input Handling:

Accepting and validating user votes.

Allowing multiple users to vote.

Vote Counting and Results:

Updating vote counts dynamically.

Displaying election results in an

organized format.

Example Candidate Vote Table

Candidate Votes

Alice 3

Bob 5

Charlie 2

Basic Rules for Simple Voting System in Python

Rule Correct Example

Use a dictionary to store

candidates and vote

counts

votes = {"Alice": 0, "Bob": 0}

Validate user input before if choice in votes:

casting a vote

Display results in

descending order

sorted(votes.items(),

key=lambda x: x[1],

reverse=True)

Syntax Table

S

L
Concept Syntax/Example Description

1

Define

candidate

s

votes = {"Alice": 0,

"Bob": 0, "Charlie": 0}

Creates a

dictionary to

store vote

counts.

2
Get user

input

choice = input("Enter

your vote: ")

Takes user

input for

voting.

3
Validate

vote
if choice in votes:

Checks if

the entered

candidate

exists.

4

Increment

vote

count

votes[choice] += 1

Increases

the

candidate's

vote count.

5
Display

results

for candidate, count in

votes.items(): print(f"

{candidate}: {count}

votes")

Prints the

voting

results.

Real-Life Project: Simple Voting System

Project Code:

1. votes = {"Alice": 0, "Bob": 0, "Charlie": 0}

2. while True:

3. print("Candidates: Alice, Bob, Charlie")

4. choice = input("Enter your vote (or type 'exit' to

finish): ")

5. if choice.lower() == "exit":

6. break

7. elif choice in votes:

8. votes[choice] += 1

9. print(f"Vote cast for {choice}!")

10. else:

11. print("Invalid candidate. Try again.")

12. print("\nVoting Results:")

13. for candidate, count in sorted(votes.items(),

key=lambda x: x[1], reverse=True):

14. print(f"{candidate}: {count} votes")

Project Code Explanation Table

Lin

e
Code Section Description

1
votes = {"Alice": 0,

"Bob": 0, "Charlie": 0}

Initializes a

dictionary to store

candidate names

and their vote

counts.

2 while True:

Starts an infinite

loop to allow

continuous voting

until the user exits.

3
print("Candidates: Alice,

Bob, Charlie")

Displays the list of

available

candidates to the

user.

4

choice = input("Enter

your vote (or type 'exit' to

finish): ")

Takes user input for

voting and allows

an option to exit.

5
if choice.lower() ==

"exit":

Checks if the user

wants to exit the

voting process.

6 break
Exits the loop if the

user types 'exit'.

7 elif choice in votes: Checks if the

entered vote

matches one of the

predefined

candidates.

8 votes[choice] += 1

Increments the vote

count for the

selected candidate.

9
print(f"Vote cast for

{choice}!")

Confirms that the

vote has been

successfully

recorded.

10 else:

Handles cases

where the user

enters an invalid

candidate name.

11
print("Invalid candidate.

Try again.")

Informs the user

that the input is

invalid and prompts

them to try again.

13

for candidate, count in

sorted(votes.items(),

key=lambda x: x[1],

reverse=True):

Sorts candidates

based on vote

count in descending

order.

14
print(f"{candidate}:

{count} votes")

Displays each

candidate’s name

along with their

vote count.

Expected Results

The program asks users to vote for a candidate.

It records and counts votes dynamically.

Users can type "exit" to end voting and see

results.

The results display vote counts for each

candidate.

Hands-On Exercise Try improving the Simple Voting

System with these additional features:

1. Allow users to add new candidates

dynamically.

2. Restrict users to one vote per session using

unique identifiers.

3. Enhance security by implementing user

authentication.

4. Store voting results in a file or database for

future reference.

5. Create a GUI version using Tkinter for

better usability.

Conclusion This Simple Voting System project introduces

Python concepts such as dictionaries, loops, and input

validation. By expanding this project, developers can create

a more sophisticated voting application with improved

security and usability.

Chapter 30: Character

Frequency Counter
Overview A Character Frequency Counter is a program that

counts the occurrences of each character in a given text.

This project helps in understanding dictionary operations,

loops, and string manipulation in Python.

This chapter covers the step-by-step implementation of a

Character Frequency Counter, handling user input,

processing character counts, and displaying the results.

Key Concepts of Character Frequency Counter in

Python

String Manipulation:

Iterating over characters in a string.

Ignoring spaces and punctuation if

needed.

Dictionary Operations:

Storing character frequencies in a

dictionary.

Updating frequency counts dynamically.

Sorting and Displaying Results:

Sorting character occurrences in

ascending or descending order.

Formatting output for readability.

Example Character Frequency Table

Character Frequency

a 3

b 2

c 1

d 4

Basic Rules for Character Frequency Counter in

Python

Rule Correct

Example

Use a dictionary to store character

counts
freq = {}

Iterate through each character in a

string
for char in text:

Ignore spaces and special characters

(optional)

if

char.isalnum():

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

text =

input("Enter text:

")

Takes a string from

the user.

2
Initialize

dictionary
freq = {}

Creates an empty

dictionary to store

character counts.

3

Loop

through

character

s

for char in text:

Iterates over each

character in the

string.

4

Update

dictionary

count

freq[char] =

freq.get(char, 0)

+ 1

Increments

character count in

dictionary.

5
Print

results

for char, count in

freq.items():

print(char, count)

Displays character

frequencies.

Real-Life Project: Character Frequency Counter

Project Code:

1. def char_frequency(text):

2. freq = {}

3. for char in text:

4. if char.isalnum():

5. freq[char] = freq.get(char, 0) + 1

6. return freq

7. text = input("Enter a string: ")

8. frequencies = char_frequency(text)

9. for char, count in sorted(frequencies.items()):

10. print(f"{char}: {count}")

Project Code Explanation Table

Li

ne
Code Section Description

1 def char_frequency(text):

Defines a function to

count the occurrences

of each character in a

given text.

2 freq = {}

Initializes an empty

dictionary to store

character frequencies.

3 for char in text:

Loops through each

character in the

provided text input.

4 if char.isalnum():

Ensures that only

alphanumeric

characters are counted,

ignoring spaces and

punctuation.

5
freq[char] = freq.get(char,

0) + 1

Uses .get(char, 0) to

check if the character

exists in the dictionary

and increments its

count.

6 return freq

Returns the dictionary

containing character

frequencies.

7
text = input("Enter a

string: ")

Takes user input as a

string for processing.

8
frequencies =

char_frequency(text)

Calls the function and

stores the resulting

frequency dictionary.

9

for char, count in

sorted(frequencies.items())

:

Sorts the dictionary

alphabetically before

displaying results.

10 print(f"{char}: {count}")

Prints the characters

along with their

respective frequency

counts.

Expected Results

The program asks the user to enter a text.

It counts the occurrences of each character.

It displays the results in sorted order.

Hands-On Exercise Try improving the Character Frequency

Counter with these additional features:

1. Ignore case sensitivity by converting text to

lowercase.

2. Allow users to choose whether to include

spaces and special characters.

3. Sort character counts by frequency instead

of alphabetically.

4. Store results in a text file for later

reference.

5. Create a GUI version using Tkinter for

better usability.

Conclusion This Character Frequency Counter project

introduces Python concepts such as loops, dictionaries, and

string manipulation. By expanding this project, developers

can create more advanced text analysis applications.

Chapter 31: Basic HTML Page

Generator
Overview A Basic HTML Page Generator is a simple

program that allows users to generate an HTML file with

custom content. This project enhances understanding of file

handling, string manipulation, and web development basics

in Python.

This chapter covers the step-by-step implementation of a

Basic HTML Page Generator, handling user input, writing

content to an HTML file, and displaying the generated

webpage.

Key Concepts of Basic HTML Page Generator in

Python

File Handling:

Using Python to create and write to an

HTML file.

Saving user-generated content in an

external file.

String Manipulation:

Using multi-line strings to create

structured HTML templates.

Formatting user input dynamically within

the HTML content.

Web Page Creation:

Generating an HTML page that can be

opened in a browser.

Adding title, headings, paragraphs, and

basic styling.

Basic HTML Structure Example

<!DOCTYPE html>

<html>

<head>

 <title>My Web Page</title>

</head>

<body>

 <h1>Welcome to My Web Page</h1>

 <p>This page was generated using Python!</p>

</body>

</html>

Basic Rules for Basic HTML Page Generator in Python

Rule Correct Example

Use open() to create an

HTML file

file = open("index.html",

"w")

Write content using .write()
file.write("<html>...

</html>")

Close file after writing file.close()

Syntax Table

S

L

Conce

pt
Syntax/Example

Descripti

on

1

Open

file in

write

mode

file = open("index.html", "w")

Creates a

new HTML

file or

overwrites

an existing

file.

2

Write

HTML

conten

t

file.write("<html>...

</html>")

Writes

structured

HTML code

into the

file.

3
Close

the file
file.close()

Saves and

closes the

file

properly.

4 Open

HTML

import webbrowser;

webbrowser.open("index.html

Opens the

generated

file ") file in a

web

browser.

Real-Life Project: Basic HTML Page Generator

Project Code:

1. def generate_html(title, heading, paragraph):

2. html_content = f"""

3. <!DOCTYPE html>

4. <html>

5. <head>

6. <title>{title}</title>

7. </head>

8. <body>

9. <h1>{heading}</h1>

10. <p>{paragraph}</p>

11. </body>

12. </html>

13. """

14. with open("index.html", "w") as file:

15. file.write(html_content)

16. print("HTML file generated successfully!")

17. title = input("Enter page title: ")

18. heading = input("Enter main heading: ")

19. paragraph = input("Enter paragraph text: ")

20. generate_html(title, heading, paragraph)

21. import webbrowser

22. webbrowser.open("index.html")

Project Code Explanation Table

Lin

e
Code Section Description

1
def generate_html(title,

heading, paragraph):

Defines a function

to generate an

HTML page with

user inputs.

2-

13
html_content = f"""..."""

Stores the

structure of the

HTML page using

an f-string for

dynamic content.

14
with open("index.html", "w") as

file:

Opens a file in

write mode to store

the HTML content.

15 file.write(html_content)

Writes the

generated HTML

content to the file.

16
print("HTML file generated

successfully!")

Displays a success

message after file

creation.

17 title = input("Enter page title: ")
Takes user input for

the web page title.

18
heading = input("Enter main

heading: ")

Takes user input for

the main heading

of the page.

19
paragraph = input("Enter

paragraph text: ")

Takes user input for

the paragraph text.

20
generate_html(title, heading,

paragraph)

Calls the function

to generate the

HTML page.

21-

22

import webbrowser;

webbrowser.open("index.html")

Opens the

generated HTML

file in the default

web browser.

Expected Results

The program asks the user for a title, heading,

and paragraph.

It creates an HTML file with the provided content.

It automatically opens the generated HTML page

in the browser.

Hands-On Exercise Try improving the Basic HTML Page

Generator with these additional features:

1. Allow users to add multiple paragraphs

dynamically.

2. Include CSS styling to improve the

appearance of the webpage.

3. Enable the user to add images and

hyperlinks through input.

4. Save multiple pages with different

filenames.

5. Create a GUI version using Tkinter to

generate pages easily.

Conclusion This Basic HTML Page Generator project

introduces Python concepts such as file handling, string

manipulation, and user input processing. By expanding this

project, developers can create more advanced webpage

automation tools.

Chapter 32: Print the First N

Fibonacci Numbers
Overview The Fibonacci sequence is a series of numbers

where each number is the sum of the two preceding ones,

starting from 0 and 1. This project helps in understanding

loops, recursion, and mathematical computations in Python.

This chapter covers the step-by-step implementation of

printing the first N Fibonacci numbers, handling user input,

and using both iterative and recursive approaches to

generate the sequence.

Key Concepts of Fibonacci Number Generator in

Python

Mathematical Computation:

Fibonacci formula: F(n) = F(n-1) + F(n-2)

Using loops and recursion to generate

the series

User Input Handling:

Taking user input for the number of terms

Validating input to ensure it is a positive

integer

Efficient Computation:

Using iteration for better performance

Implementing recursion with

memoization for optimization

Fibonacci Sequence Example

N (Term) Fibonacci Number

1 0

2 1

3 1

4 2

5 3

6 5

7 8

8 13

Basic Rules for Fibonacci Number Generator in

Python

Rule Correct Example

Use recursion for

Fibonacci sequence

def fibonacci(n): return fibonacci(n-

1) + fibonacci(n-2)

Use iteration for

better efficiency

for i in range(n): fib.append(fib[i-1]

+ fib[i-2])

Validate user input if n < 0: print("Invalid input")

Syntax Table

S

L
Concept Syntax/Example Description

1

Define

recursive

function

def fibonacci(n):

Defines a

function to

compute

Fibonacci

numbers

recursively.

2

Define

loop-

based

function

def

fibonacci_iterative(n):

Defines a

function to

compute

Fibonacci

numbers using

iteration.

3
Get user

input

n = int(input("Enter

number of terms: "))

Takes user

input for the

number of

terms.

4
Validate

input
if n < 0:

Ensures the

input is a

positive

integer.

5

Display

sequenc

e

print(fibonacci(n))

Prints the

Fibonacci

sequence.

Real-Life Project: Fibonacci Sequence Generator

Project Code:

1. def fibonacci_recursive(n):

2. if n <= 0:

3. return "Invalid input"

4. elif n == 1:

5. return [0]

6. elif n == 2:

7. return [0, 1]

8. else:

9. sequence = fibonacci_recursive(n-1)

10. sequence.append(sequence[-1] + sequence[-2])

11. return sequence

12. def fibonacci_iterative(n):

13. if n <= 0:

14. return "Invalid input"

15. fib_series = [0, 1]

16. for i in range(2, n):

17. fib_series.append(fib_series[i-1] + fib_series[i-2])

18. return fib_series[:n]

19. n = int(input("Enter the number of terms: "))

20. print("Fibonacci Series (Iterative):",

fibonacci_iterative(n))

21. print("Fibonacci Series (Recursive):",

fibonacci_recursive(n))

Project Code Explanation Table

Li

ne
Code Section Description

1 def fibonacci_recursive(n): Defines a function

to generate the

Fibonacci sequence

recursively.

2 if n <= 0:

Checks if the input

is non-positive and

returns an error

message.

3 return "Invalid input"

Returns an error

message if the input

is invalid.

4 elif n == 1:

If the input is 1,

returns a list with

only the first

Fibonacci number

[0] .

5 return [0]

The Fibonacci

sequence starts

with 0 for n = 1 .

6 elif n == 2:

If the input is 2,

returns the first two

Fibonacci numbers

[0, 1] .

7 return [0, 1]

Defines the starting

sequence for n =

2 .

8 else:

Executes the

recursive approach

for n > 2 .

9
sequence =

fibonacci_recursive(n-1)

Recursively calls the

function for n-1 to

build the sequence.

10
sequence.append(sequence[-1

] + sequence[-2])

Computes the next

Fibonacci number

by summing the last

two values.

11 return sequence Returns the final

Fibonacci sequence

after appending

new values.

12 def fibonacci_iterative(n):

Defines a function

to generate the

Fibonacci sequence

iteratively.

13 if n <= 0:

Checks if the input

is invalid and

returns an error

message.

14 return "Invalid input"

Returns an error

message if the input

is not positive.

15 fib_series = [0, 1]

Initializes the

Fibonacci series with

the first two values.

16 for i in range(2, n):

Loops from 2 to n-

1 to generate the

Fibonacci sequence

iteratively.

17
fib_series.append(fib_series[i-

1] + fib_series[i-2])

Computes the next

Fibonacci number

using iteration.

18 return fib_series[:n]

Returns the

Fibonacci sequence

up to n terms.

19
n = int(input("Enter the

number of terms: "))

Takes user input for

the number of

Fibonacci terms.

20

print("Fibonacci Series

(Iterative):",

fibonacci_iterative(n))

Calls and prints the

iterative Fibonacci

sequence.

21 print("Fibonacci Series Calls and prints the

(Recursive):",

fibonacci_recursive(n))

recursive Fibonacci

sequence.

Expected Results

The program asks the user for the number of

terms.

It generates and prints the Fibonacci sequence

using both iteration and recursion.

If the user enters an invalid number, an error

message is displayed.

Hands-On Exercise Try improving the Fibonacci Sequence

Generator with these additional features:

1. Optimize recursive calls using memoization

with a dictionary.

2. Allow the user to choose between recursion

and iteration.

3. Display a graphical representation of the

Fibonacci sequence using Matplotlib.

4. Generate Fibonacci numbers for large values

efficiently using an optimized approach.

5. Create a GUI version using Tkinter for

better user interaction.

Conclusion This Fibonacci Sequence Generator project

introduces Python concepts such as recursion, iteration, and

mathematical logic. By expanding this project, developers

can build more optimized and interactive mathematical

applications.

Chapter 33: Count Vowels in a

String
Overview A Vowel Counter is a simple program that

determines the number of vowels present in a given string.

This project helps in understanding string manipulation,

loops, and conditional statements in Python.

This chapter covers the step-by-step implementation of

counting vowels in a string, handling user input, processing

characters, and displaying the results.

Key Concepts of Vowel Counter in Python

String Manipulation:

Iterating over each character in a string.

Converting text to lowercase for case

insensitivity.

Conditional Statements:

Checking if a character belongs to the set

of vowels (a, e, i, o, u).

Counting and displaying the total number

of vowels.

User Input Handling:

Taking a string from the user.

Displaying the frequency of each vowel.

Example Vowel Count Table

Character Count

a 2

e 1

i 3

o 1

u 0

Basic Rules for Vowel Counter in Python

Rule Correct

Example

Use a loop to iterate over a string for char in text:

Convert text to lowercase before

checking
text.lower()

Use a dictionary to store vowel counts
vowel_count =

{}

Syntax Table

S

L
Concept Syntax/Example Description

1

Convert

string to

lowercase

text.lower()

Ensures case-

insensitive

comparison.

2

Loop

through

character

s

for char in text:

Iterates over

each

character in

the input

string.

3

Check if

character

is a vowel

if char in "aeiou":

Determines if

a character is

a vowel.

4

Use a

dictionary

for

counting

vowel_count[char] =

vowel_count.get(char,

0) + 1

Updates the

count of each

vowel.

5

Print

vowel

frequency

print(f"{char}:

{count}")

Displays the

count of each

vowel.

Real-Life Project: Vowel Counter

Project Code:

1. def count_vowels(text):

2. text = text.lower()

3. vowels = "aeiou"

4. vowel_count = {v: 0 for v in vowels}

5. for char in text:

6. if char in vowels:

7. vowel_count[char] += 1

8. return vowel_count

9. text = input("Enter a string: ")

10. vowels_found = count_vowels(text)

11. for vowel, count in vowels_found.items():

12. print(f"{vowel}: {count}")

Project Code Explanation Table

Lin

e
Code Section Description

1
def

count_vowels(text):

Defines a function to count

vowels in a given text.

2 text = text.lower()

Converts the input string to

lowercase to ensure case

insensitivity.

3 vowels = "aeiou"
Defines a string containing

all vowels.

4
vowel_count = {v: 0

for v in vowels}

Initializes a dictionary to

store vowel counts with all

vowels set to 0.

5 for char in text:
Loops through each

character in the input text.

6 if char in vowels:
Checks if the current

character is a vowel.

7
vowel_count[char] +=

1

Increments the count of the

vowel found.

8 return vowel_count
Returns the dictionary

containing vowel counts.

9
text = input("Enter a

string: ")
Takes user input as a string.

10
vowels_found =

count_vowels(text)

Calls the function and stores

the result in a dictionary.

11-

12

for vowel, count in

vowels_found.items():

Loops through the dictionary

and prints vowel counts.

Expected Results

The program asks the user to enter a string.

It counts the occurrences of vowels (a, e, i, o, u).

It displays the results in a structured format.

Hands-On Exercise Try improving the Vowel Counter with

these additional features:

1. Include uppercase vowels in the count

without converting the text.

2. Extend the program to count consonants as

well.

3. Allow users to enter multiple lines of text for

processing.

4. Store the vowel count results in a file.

5. Create a GUI version using Tkinter for a

user-friendly interface.

Conclusion This Vowel Counter project introduces Python

concepts such as loops, dictionaries, and string

manipulation. By expanding this project, developers can

create more advanced text analysis applications.

Chapter 34: Check if a Number

is Prime
Overview A Prime Number Checker is a program that

determines whether a given number is prime. A prime

number is a number greater than 1 that has only two

factors: 1 and itself. This project helps in understanding

loops, conditional statements, and mathematical logic in

Python.

This chapter covers the step-by-step implementation of a

Prime Number Checker, handling user input, applying

divisibility rules, and displaying results.

Key Concepts of Prime Number Checker in Python

Mathematical Computation:

A prime number is only divisible by 1 and

itself.

The smallest prime number is 2.

User Input Handling:

Taking user input to check for primality.

Efficient Computation:

Using loops to check divisibility up to √n

for optimization.

Prime Number Example Table

Number Prime?

2 Yes

3 Yes

4 No

5 Yes

6 No

7 Yes

8 No

9 No

10 No

Basic Rules for Prime Number Checker in Python

Rule Correct Example

Check divisibility from

2 to √n
if n % i == 0: return False

Validate user input if n < 2: print("Not prime")

Optimize loop for

efficiency
for i in range(2, int(n**0.5) + 1):

Syntax Table

S

L
Concept Syntax/Example Description

1
Define

function
def is_prime(n):

Defines a

function to check

primality.

2
Validate

input
if n < 2:

Ensures the

number is

greater than 1.

3

Loop for

divisibility

test

for i in range(2,

int(n**0.5) + 1):

Iterates up to the

square root of

n .

4

Return

prime

status

return True
Returns True if

n is prime.

5
Display

result
print(is_prime(n))

Prints whether

the number is

prime.

Real-Life Project: Prime Number Checker

Project Code:

1. def is_prime(n):

2. if n < 2:

3. return False

4. for i in range(2, int(n**0.5) + 1):

5. if n % i == 0:

6. return False

7. return True

8. number = int(input("Enter a number: "))

9. if is_prime(number):

10. print(f"{number} is a prime number.")

11. else:

12. print(f"{number} is not a prime number.")

Project Code Explanation Table

Lin

e
Code Section Description

1-7 def is_prime(n):
Defines a function to check

if a number is prime.

2-3 if n < 2:
Returns False for numbers

less than 2.

4-6
for i in range(2,

int(n**0.5) + 1):

Iterates up to the square

root of n to check

divisibility.

5-6 if n % i == 0:
Returns False if n is

divisible by i .

7 return True
Returns True if no divisors

were found.

8

number =

int(input("Enter a

number: "))

Takes user input.

9-10 if is_prime(number):
Checks if the number is

prime and prints the result.

11-

12
else:

Prints a message if the

number is not prime.

Expected Results

The program asks the user to enter a number.

It checks if the number is prime using the

function.

It prints whether the number is prime or not.

If the user enters a number less than 2, it prints

"Not a prime number."

Hands-On Exercise Try improving the Prime Number

Checker with these additional features:

1. Allow users to check multiple numbers in a

loop.

2. Generate a list of prime numbers within a

given range.

3. Use a caching mechanism (memoization) to

speed up repeated checks.

4. Create a graphical user interface (GUI) using

Tkinter .

5. Implement an option to check large prime

numbers using the Miller-Rabin primality

test.

Conclusion This Prime Number Checker project introduces

Python concepts such as loops, mathematical logic, and

input validation. By expanding this project, developers can

create more efficient and interactive number validation

tools.

Chapter 35: Random Joke

Generator
Overview A Random Joke Generator is a fun application

that displays a random joke from a predefined list or an

external API. This project helps in understanding list

operations, randomization, and API requests in Python.

This chapter covers the step-by-step implementation of a

Random Joke Generator, handling user input, fetching jokes

from a local list or an API, and displaying the results.

Key Concepts of Random Joke Generator in Python

Randomization:

Using the random module to select a

random joke.

Implementing user interaction to

generate multiple jokes.

List Handling:

Storing jokes in a list for easy access.

Fetching a joke randomly from the list.

API Requests (Optional):

Fetching jokes dynamically from an

online joke API.

Using the requests module to retrieve

data from a URL.

Example Joke Table

Joke Punchline

Why don’t skeletons fight?
They don’t have the

guts.

Parallel lines have so much in

common…

It’s a shame they’ll

never meet.

Why was the math book sad?
It had too many

problems.

Basic Rules for Random Joke Generator in Python

Rule Correct Example

Use

random.choice()

to pick a joke

joke = random.choice(jokes_list)

Store jokes in a

list
jokes_list = ["Joke 1", "Joke 2"]

Fetch a joke from

an API

requests.get("https://official-joke-

api.appspot.com/jokes/random")

Syntax Table

S

L
Concept Syntax/Example Description

1

Import

random

module

import random

Enables

random

selection of

jokes.

2

Store

jokes in

a list

jokes = ["Joke 1", "Joke

2"]

Defines a list

of jokes.

3

Select a

random

joke

random.choice(jokes)

Picks a joke

randomly

from the list.

4

Fetch

joke

from API

requests.get(url).json()

Retrieves a

joke from an

online API.

5
Display

joke
print(joke)

Prints the

selected joke.

Real-Life Project: Random Joke Generator

Project Code (Using Local List):

1. import random

2. jokes = [

3. "Why don’t skeletons fight? They don’t have the

guts.",

4. "Parallel lines have so much in common. It’s a shame

they’ll never meet.",

5. "Why was the math book sad? It had too many

problems."

6.]

7. def tell_joke():

8. return random.choice(jokes)

9. print("Here’s a random joke for you:")

10. print(tell_joke())

Project Code (Using API):

1. import requests

2. import json

3. def get_joke():

4. url = "https://official-joke-

api.appspot.com/jokes/random"

5. response = requests.get(url)

6. joke_data = response.json()

7. return f"{joke_data['setup']} {joke_data['punchline']}"

8. print("Here’s a random joke for you:")

9. print(get_joke())

Project Code Explanation Table

Lin

e
Code Section Description

1 import random

Imports the

random module for

selecting jokes.

2-6 jokes = [...]
Defines a list of

jokes.

7-8 def tell_joke():

Defines a function

to select and return

a random joke.

9
print("Here’s a random joke for

you:")

Prints an

introduction

message.

10 print(tell_joke())

Calls the function

and prints a

random joke.

1-2 import requests, json

Imports the

requests and json

modules for

fetching jokes from

an API.

https://official-joke-api.appspot.com/jokes/random

3-7 def get_joke():

Defines a function

to get a joke from

an external API.

4
url = "https://official-joke-

api.appspot.com/jokes/random"

Specifies the joke

API URL.

5 response = requests.get(url)

Sends a GET

request to fetch a

joke.

6 joke_data = response.json()
Parses the JSON

response.

7
return f"{joke_data['setup']}

{joke_data['punchline']}"

Formats and

returns the joke.

8-9 print(get_joke())
Calls the function

and prints the joke.

Expected Results

The program displays a random joke from a

predefined list.

If using an API, it fetches a new joke from the

internet.

The joke is printed in a readable format.

Hands-On Exercise Try improving the Random Joke

Generator with these additional features:

1. Allow users to request multiple jokes in a

loop.

2. Categorize jokes (e.g., programming, puns,

dad jokes).

3. Enable users to add new jokes to the list

dynamically.

4. Create a GUI version using Tkinter for a fun

interface.

5. Use text-to-speech (pyttsx3) to read the

jokes aloud.

https://official-joke-api.appspot.com/jokes/random

Conclusion This Random Joke Generator project introduces

Python concepts such as randomization, list handling, and

API requests. By expanding this project, developers can

create interactive joke applications with dynamic content.

Chapter 36: Reverse a String

Overview Reversing a string is a common operation in

programming, often used in text manipulation, data

processing, and algorithms. This project helps in

understanding string slicing, loops, and built-in functions in

Python.

This chapter covers the step-by-step implementation of

reversing a string using different approaches, including

slicing, loops, and built-in functions.

Key Concepts of String Reversal in Python

String Manipulation:

Accessing characters in a string using

indexing.

Using loops and built-in methods for

reversal.

Efficient Computation:

Using Python’s slicing method for quick

reversal.

Implementing an iterative approach for

better understanding.

Built-in Functions:

Utilizing reversed() and join() for a

more Pythonic solution.

Example String Reversal Table

Original String Reversed String

hello olleh

python nohtyp

racecar racecar

world dlrow

Basic Rules for String Reversal in Python

Rule Correct Example

Use slicing for fast reversed_string = text[::-1]

reversal

Use a loop for

manual reversal

for char in text: reversed_text = char

+ reversed_text

Use built-in

function

reversed()

''.join(reversed(text))

Syntax Table

SL
Concep

t
Syntax/Example Description

1

Reverse

using

slicing

text[::-1]
Uses slicing to

reverse the string.

2

Reverse

using a

loop

for char in text:

reversed_text =

char +

reversed_text

Iterates through

each character

and builds a

reversed string.

3

Reverse

using

reverse

d()

''.join(reversed(tex

t))

Uses Python’s

built-in reversed

function.

4
Get user

input

text = input("Enter

a string: ")

Takes input from

the user.

5

Print

reverse

d string

print("Reversed

string:",

reversed_text)

Displays the

reversed string.

Real-Life Project: String Reversal Program

Project Code:

1. def reverse_string_slicing(text):

2. return text[::-1]

3. def reverse_string_loop(text):

4. reversed_text = ""

5. for char in text:

6. reversed_text = char + reversed_text

7. return reversed_text

8. def reverse_string_builtin(text):

9. return ''.join(reversed(text))

10. text = input("Enter a string: ")

11. print("Reversed (Slicing):", reverse_string_slicing(text))

12. print("Reversed (Loop):", reverse_string_loop(text))

13. print("Reversed (Built-in Function):",

reverse_string_builtin(text))

Project Code Explanation Table

Li

ne
Code Section Description

1-2
def

reverse_string_slicing(text):

Defines a function to

reverse a string using

slicing.

3-7
def

reverse_string_loop(text):

Defines a function to

reverse a string using a

loop.

4 reversed_text = ""

Initializes an empty

string to store the

reversed string.

5-6 for char in text:
Iterates through each

character in the string.

6
reversed_text = char +

reversed_text

Appends each character

at the beginning to

build the reversed

string.

8-9
def

reverse_string_builtin(text):

Defines a function to

reverse a string using

Python's built-in

reversed() function.

10
text = input("Enter a string:

")

Takes user input as a

string.

11
print("Reversed (Slicing):",

reverse_string_slicing(text))

Calls the slicing method

and prints the reversed

string.

12
print("Reversed (Loop):",

reverse_string_loop(text))

Calls the loop method

and prints the reversed

string.

13

print("Reversed (Built-in

Function):",

reverse_string_builtin(text))

Calls the built-in

function method and

prints the reversed

string.

Expected Results

The program asks the user to enter a string.

It prints the reversed string using three different

methods.

The output is formatted neatly for easy

comparison.

Hands-On Exercise Try improving the String Reversal

program with these additional features:

1. Allow users to input multiple strings and

reverse them.

2. Ignore spaces and punctuation while

reversing (e.g., "Hello, world!" →

"dlrowolleH").

3. Implement the program using recursion for

an advanced approach.

4. Create a GUI version using Tkinter for

better interaction.

5. Integrate a feature to check if a string is a

palindrome.

Conclusion This String Reversal project introduces Python

concepts such as slicing, loops, and built-in functions. By

expanding this project, developers can create more

advanced string manipulation applications.

Chapter 38: Word Frequency

Counter
Overview A Word Frequency Counter is a program that

counts the occurrences of each word in a given text. This

project helps in understanding string manipulation, loops,

dictionaries, and file handling in Python.

This chapter covers the step-by-step implementation of

counting word frequencies in a string, handling user input,

processing text efficiently, and displaying results in a

structured format.

Key Concepts of Word Frequency Counter in Python

String Manipulation:

Splitting text into words.

Removing punctuation and converting to

lowercase.

Dictionary Operations:

Storing words as keys and their counts as

values.

Updating word counts dynamically.

Sorting and Displaying Results:

Sorting word occurrences in ascending or

descending order.

Formatting output for readability.

Example Word Frequency Table

Word Frequency

Python 3

is 2

fun 1

coding 1

Basic Rules for Word Frequency Counter in Python

Rule Correct Example

Use split() to split text

into words
words = text.split()

Use a dictionary to store

word counts
word_count = {}

Remove punctuation

using re.sub()

text = re.sub(r'[^a-zA-Z0-9]',

'', text)

Syntax Table

S

L
Concept Syntax/Example

Descriptio

n

1

Convert

string to

lowercase

text.lower()

Ensures

case-

insensitive

comparison.

2

Remove

punctuatio

n

re.sub(r'[^a-zA-Z0-9

]', '', text)

Removes

special

characters.

3
Split text

into words
words = text.split()

Creates a

list of words.

4

Use

dictionary

for

counting

word_count[word] =

word_count.get(word,

0) + 1

Updates the

count of

each word.

5
Print word

frequency

print(f"{word}:

{count}")

Displays the

count of

each word.

Real-Life Project: Word Frequency Counter

Project Code:

1. import re

2. def count_word_frequency(text):

3. text = text.lower()

4. text = re.sub(r'[^a-zA-Z0-9]', '', text)

5. words = text.split()

6. word_count = {}

7. for word in words:

8. word_count[word] = word_count.get(word, 0) + 1

9. return word_count

10. text = input("Enter a text: ")

11. frequencies = count_word_frequency(text)

12. for word, count in sorted(frequencies.items(),

key=lambda x: x[1], reverse=True):

13. print(f"{word}: {count}")

Project Code Explanation Table

Lin

e
Code Section Description

1 import re

Imports the re

module for regex

operations.

2-9
def

count_word_frequency(text):

Defines a

function to count

word

occurrences.

3 text = text.lower()

Converts the

input string to

lowercase for

consistency.

4
text = re.sub(r'[^a-zA-Z0-9

]', '', text)

Removes

punctuation and

special

characters.

5 words = text.split()

Splits the text

into individual

words.

6 word_count = {}

Initializes an

empty dictionary

to store word

counts.

7-8 for word in words:

Loops through

each word and

updates the

count.

9 return word_count

Returns the

dictionary

containing word

counts.

10 text = input("Enter a text: ") Takes user input

as text.

11
frequencies =

count_word_frequency(text)

Calls the

function and

stores results in

a dictionary.

12-

13

for word, count in

sorted(frequencies.items(),

key=lambda x: x[1],

reverse=True):

Sorts and prints

words by

frequency.

Expected Results

The program asks the user to enter a text.

It counts the occurrences of words.

It displays the results in descending order of

frequency.

Hands-On Exercise Try improving the Word Frequency

Counter with these additional features:

1. Ignore common stopwords (e.g., "the", "is",

"and").

2. Allow users to analyze text from a file

instead of manual input.

Chapter 39: Armstrong Number

Checker
Overview An Armstrong Number Checker is a program that

determines whether a given number is an Armstrong

number. An Armstrong number (also known as a narcissistic

number) is a number where the sum of its digits, each

raised to the power of the number of digits, equals the

original number. This project helps in understanding

mathematical computations, loops, and conditional

statements in Python.

This chapter covers the step-by-step implementation of an

Armstrong Number Checker, handling user input, applying

the Armstrong number formula, and displaying results.

Key Concepts of Armstrong Number Checker in

Python

Mathematical Computation:

An Armstrong number for a three-digit

number is calculated as:

Example: 153 = 1³ + 5³ + 3³ = 1 + 125

+ 27 = 153

User Input Handling:

Taking user input to check for Armstrong

number validity.

Validating input to ensure it is a positive

integer.

Efficient Computation:

Using loops and mathematical operations

to compute the sum of powered digits.

Example Armstrong Numbers

Number Armstrong?

0 Yes

1 Yes

153 Yes

9474 Yes

9475 No

Basic Rules for Armstrong Number Checker in Python

Rule Correct Example

Extract digits using //

and %
digit = num % 10

Compute powered sum sum += digit ** num_length

Validate input before

processing

if num < 0: print("Invalid

input")

Syntax Table

S

L
Concept

Syntax/Exampl

e
Description

1
Get user

input

num =

int(input("Enter a

number: "))

Takes input for

checking

Armstrong

number.

2

Find

number of

digits

num_length =

len(str(num))

Counts the

number of digits

in the number.

3
Extract

each digit
digit = num % 10

Retrieves the last

digit of the

number.

4

Compute

sum of

powered

digits

sum += digit **

num_length

Adds the

powered value of

each digit.

5

Check

Armstrong

condition

if sum == num:

Compares the

sum with the

original number.

Real-Life Project: Armstrong Number Checker

Project Code:

1. def is_armstrong(num):

2. num_length = len(str(num))

3. sum_of_digits = 0

4. temp = num

5. while temp > 0:

6. digit = temp % 10

7. sum_of_digits += digit ** num_length

8. temp //= 10

9. return sum_of_digits == num

10. num = int(input("Enter a number: "))

11. if is_armstrong(num):

12. print(f"{num} is an Armstrong number.")

13. else:

14. print(f"{num} is not an Armstrong number.")

Project Code Explanation Table

Lin

e
Code Section Description

1-9
def

is_armstrong(num):

Defines a function to check if a

number is Armstrong.

2
num_length =

len(str(num))

Determines the number of

digits in the number.

3 sum_of_digits = 0
Initializes a variable to store

the sum of powered digits.

4 temp = num
Creates a temporary variable to

process digits.

5 while temp > 0:
Loops through the number to

extract digits.

6 digit = temp % 10 Extracts the last digit.

7
sum_of_digits +=

digit ** num_length

Raises the digit to the power of

the number length and adds it

to the sum.

8 temp //= 10
Removes the last digit from

temp .

9

return

sum_of_digits ==

num

Returns True if the sum

matches the original number.

10

num =

int(input("Enter a

number: "))

Takes user input as an integer.

11-

12

if

is_armstrong(num):

Checks if the number is an

Armstrong number and prints

the result.

13-

14
else:

Prints a message if the number

is not an Armstrong number.

Expected Results

The program asks the user to enter a number.

It checks whether the number satisfies the

Armstrong condition.

It prints whether the number is an Armstrong

number or not.

If the user enters a negative number, it prints

"Invalid input."

Hands-On Exercise Try improving the Armstrong Number

Checker with these additional features:

1. Allow users to check multiple numbers in a

loop.

2. Check for Armstrong numbers in a given

range.

3. Optimize the function to handle very large

numbers efficiently.

4. Create a GUI version using Tkinter for

better user interaction.

5. Implement a feature to list all Armstrong

numbers up to a given limit.

Conclusion This Armstrong Number Checker project

introduces Python concepts such as loops, mathematical

computations, and input validation. By expanding this

project, developers can create more efficient number

validation tools.

Chapter 40: Sum of Digits

Calculator
Overview A Sum of Digits Calculator is a program that

calculates the sum of all individual digits in a given number.

This project helps in understanding loops, mathematical

operations, and user input handling in Python.

This chapter covers the step-by-step implementation of a

Sum of Digits Calculator, handling user input, extracting

digits, and performing summation operations.

Key Concepts of Sum of Digits Calculator in Python

Mathematical Computation:

Extracting digits using modulus (%) and

integer division (//).

Summing up the extracted digits.

User Input Handling:

Taking user input to calculate the sum of

digits.

Ensuring the input is a non-negative

integer.

Looping for Iteration:

Using a while loop to process each digit

of the number.

Stopping when all digits are extracted.

Example Sum of Digits Calculation

Number Sum of Digits

123 1 + 2 + 3 = 6

456 4 + 5 + 6 = 15

789 7 + 8 + 9 = 24

1024 1 + 0 + 2 + 4 = 7

Basic Rules for Sum of Digits Calculator in Python

Rule Correct

Example

Extract last digit using modulus digit = num % 10

Remove last digit using integer division num //= 10

Use a loop to iterate through all digits while num > 0:

Syntax Table

S

L
Concept

Syntax/Exampl

e
Description

1
Get user

input

num =

int(input("Enter a

number: "))

Takes input for

calculating digit

sum.

2
Extract

last digit
digit = num % 10

Retrieves the last

digit.

3
Remove

last digit
num //= 10

Removes the last

digit from the

number.

4

Compute

sum of

digits

sum += digit

Adds the

extracted digit to

the sum.

5
Display

result

print("Sum of

digits:", sum)

Prints the

calculated sum.

Real-Life Project: Sum of Digits Calculator

Project Code:

1. def sum_of_digits(num):

2. if num < 0:

3. return "Invalid input! Please enter a non-negative

integer."

4. total = 0

5. while num > 0:

6. digit = num % 10

7. total += digit

8. num //= 10

9. return total

10. num = int(input("Enter a number: "))

11. print("Sum of digits:", sum_of_digits(num))

Project Code Explanation Table

Lin

e
Code Section Description

1-9 def sum_of_digits(num): Defines a function to

calculate the sum of

digits.

2-3 if num < 0:
Returns an error message

if the number is negative.

4 total = 0
Initializes a variable to

store the sum.

5 while num > 0:
Loops through all digits of

the number.

6 digit = num % 10
Extracts the last digit of

the number.

7 total += digit
Adds the digit to the total

sum.

8 num //= 10
Removes the last digit

from the number.

9 return total Returns the sum of digits.

10
num = int(input("Enter

a number: "))

Takes user input as an

integer.

11
print("Sum of digits:",

sum_of_digits(num))

Calls the function and

prints the sum.

Expected Results

The program asks the user to enter a number.

It calculates the sum of its digits.

It prints the sum as output.

If the user enters a negative number, it prints

"Invalid input."

Hands-On Exercise Try improving the Sum of Digits

Calculator with these additional features:

1. Allow users to calculate the sum of digits for

multiple numbers in a loop.

2. Modify the program to return the sum of

digits recursively.

3. Create a GUI version using Tkinter for user-

friendly interaction.

4. Extend the functionality to compute the sum

of squares of digits.

5. Store results in a text file for historical

tracking.

Conclusion This Sum of Digits Calculator project introduces

Python concepts such as loops, mathematical computations,

and input validation. By expanding this project, developers

can create more advanced number-processing applications.

Chapter 41: Find the GCD and

LCM of Two Numbers
Overview A GCD and LCM Calculator is a program that

computes the Greatest Common Divisor (GCD) and Least

Common Multiple (LCM) of two numbers. This project helps

in understanding mathematical computations, loops, and

built-in Python functions.

This chapter covers the step-by-step implementation of

calculating GCD and LCM, handling user input, applying

mathematical formulas, and displaying results.

Key Concepts of GCD and LCM Calculator in Python

Mathematical Computation:

The GCD (Greatest Common Divisor)

of two numbers is the largest number

that divides both numbers exactly.

The LCM (Least Common Multiple) of

two numbers is the smallest number that

is a multiple of both numbers.

User Input Handling:

Taking user input for two numbers.

Ensuring the input values are positive

integers.

Efficient Computation:

Using Euclidean Algorithm for GCD

calculation.

Using the formula LCM(a, b) = (a * b) /

GCD(a, b) for LCM computation.

Example GCD and LCM Calculation

Numbers (a, b) GCD(a, b) LCM(a, b)

12, 18 6 36

24, 36 12 72

7, 13 1 91

9, 27 9 27

Basic Rules for GCD and LCM Calculator in Python

Rule Correct Example

Use Euclidean

Algorithm for GCD
gcd(a, b) = gcd(b, a % b)

Compute LCM using

formula
lcm(a, b) = (a * b) // gcd(a, b)

Validate user input

before processing

if a <= 0 or b <= 0:

print("Invalid input")

Syntax Table

S

L
Concept Syntax/Example

Descriptio

n

1 Get user input
a = int(input("Enter

first number: "))

Takes first

number as

input.

2 Get user input
b = int(input("Enter

second number: "))

Takes

second

number as

input.

3

Compute GCD

using

recursion

def gcd(a, b): return

b if a % b == 0 else

gcd(b, a % b)

Uses

Euclidean

Algorithm.

4 Compute LCM
lcm = (a * b) //

gcd(a, b)

Uses the

LCM

formula.

5 Display result
print(f"GCD: {gcd},

LCM: {lcm}")

Prints GCD

and LCM

values.

Real-Life Project: GCD and LCM Calculator

Project Code:

1. def gcd(a, b):

2. while b:

3. a, b = b, a % b

4. return a

5. def lcm(a, b):

6. return (a * b) // gcd(a, b)

7. a = int(input("Enter first number: "))

8. b = int(input("Enter second number: "))

9. if a > 0 and b > 0:

10. print(f"GCD of {a} and {b} is: {gcd(a, b)}")

11. print(f"LCM of {a} and {b} is: {lcm(a, b)}")

12. else:

13. print("Invalid input! Please enter positive integers.")

Project Code Explanation Table

Lin

e
Code Section Description

1-4 def gcd(a, b):

Defines a function to compute

the GCD using the Euclidean

Algorithm.

2-3 while b:

Iteratively computes GCD by

replacing a with b and b

with a % b .

5-6 def lcm(a, b):
Defines a function to compute

the LCM using the formula.

7
a = int(input("Enter

first number: "))

Takes the first number as user

input.

8
b = int(input("Enter

second number: "))

Takes the second number as

user input.

9 if a > 0 and b > 0:
Ensures both numbers are

positive before proceeding.

10

print(f"GCD of {a}

and {b} is: {gcd(a,

b)}")

Computes and prints the GCD.

11

print(f"LCM of {a}

and {b} is: {lcm(a,

b)}")

Computes and prints the LCM.

12-

13

else: print("Invalid

input!")
Handles invalid input cases.

Expected Results

The program asks the user to enter two numbers.

It calculates the GCD and LCM of the numbers.

It prints the GCD and LCM results.

If the user enters negative or zero values, it prints

"Invalid input."

Hands-On Exercise Try improving the GCD and LCM

Calculator with these additional features:

1. Allow users to calculate the GCD and LCM of

more than two numbers.

2. Display step-by-step GCD computation for

educational purposes.

3. Create a GUI version using Tkinter for

interactive use.

Chapter 42: Sorting a List of

Numbers
Overview Sorting is a fundamental operation in

programming that arranges elements in a specific order

(ascending or descending). Python provides multiple ways

to sort lists efficiently using built-in functions and sorting

algorithms.

This chapter covers the step-by-step implementation of

sorting a list of numbers, handling user input, using built-in

sorting functions, and implementing common sorting

algorithms.

Key Concepts of Sorting in Python

Sorting Methods:

Using Python’s built-in sorted() and

.sort() methods.

Implementing manual sorting algorithms

like Bubble Sort, Selection Sort, and

Quick Sort.

User Input Handling:

Taking user input for a list of numbers.

Allowing users to choose the sorting

order (ascending/descending).

Efficiency Considerations:

Understanding time complexity of sorting

algorithms.

Choosing the right algorithm based on

input size.

Example Sorted Lists

Unsorted List Ascending Order Descending Order

[5, 3, 8, 1, 2] [1, 2, 3, 5, 8] [8, 5, 3, 2, 1]

[12, 7, 19, 4] [4, 7, 12, 19] [19, 12, 7, 4]

Basic Rules for Sorting a List in Python

Rule Correct Example

Use sorted() for a new sorted

list

sorted_list =

sorted(numbers)

Use .sort() to modify the list

in-place
numbers.sort()

Specify descending order
sorted(numbers,

reverse=True)

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

numbers =

list(map(int,

input().split()))

Takes a list of

numbers as

input.

2
Sort using

sorted()

sorted_list =

sorted(numbers)

Returns a

new sorted

list.

3
Sort using

.sort()
numbers.sort()

Sorts the list

in-place.

4

Sort in

descendin

g order

sorted(numbers,

reverse=True)

Returns a

sorted list in

descending

order.

5

Implement

Bubble

Sort

for i in

range(len(numbers)):

Uses loops to

sort numbers

manually.

Real-Life Project: Sorting a List of Numbers

Project Code:

1. def bubble_sort(numbers):

2. n = len(numbers)

3. for i in range(n - 1):

4. for j in range(n - i - 1):

5. if numbers[j] > numbers[j + 1]:

6. numbers[j], numbers[j + 1] = numbers[j + 1],

numbers[j]

7. return numbers

8. numbers = list(map(int, input("Enter numbers separated

by space: ").split()))

9. print("Sorted List (Using sorted()):", sorted(numbers))

10. numbers.sort()

11. print("Sorted List (Using .sort()):", numbers)

12. print("Sorted List (Bubble Sort):", bubble_sort(numbers))

Project Code Explanation Table

Lin

e
Code Section Description

1-7
def

bubble_sort(numbers):

Defines a function to sort

a list using Bubble Sort.

2 n = len(numbers) Gets the length of the list.

3-4
for i in range(n - 1): for j

in range(n - i - 1):

Loops through the list to

compare elements.

5-6
if numbers[j] >

numbers[j + 1]: swap

Swaps elements if they

are in the wrong order.

8
numbers = list(map(int,

input().split()))

Takes user input and

converts it into a list of

integers.

9

print("Sorted List (Using

sorted()):",

sorted(numbers))

Sorts the list using the

built-in sorted() function.

10 numbers.sort()
Sorts the list in-place

using .sort() .

11
print("Sorted List (Using

.sort()):", numbers)

Displays the sorted list

using .sort() .

12

print("Sorted List (Bubble

Sort):",

bubble_sort(numbers))

Sorts the list using the

Bubble Sort function and

prints the result.

Expected Results

The program asks the user to enter a list of

numbers.

It sorts the list using different methods (sorted() ,

.sort() , and Bubble Sort).

It prints the sorted lists in ascending order.

Hands-On Exercise Try improving the Sorting program

with these additional features:

1. Allow users to choose between ascending

and descending order.

2. Implement additional sorting algorithms

(Selection Sort, Quick Sort, Merge Sort).

3. Compare sorting speeds using timeit

module.

4. Create a GUI version using Tkinter to input

numbers

Chapter 43: Find the Maximum

and Minimum from a List
Overview Finding the maximum and minimum values in a

list is a fundamental operation in programming. Python

provides multiple ways to achieve this using built-in

functions, loops, and sorting techniques.

This chapter covers the step-by-step implementation of

finding the maximum and minimum numbers in a list,

handling user input, using built-in functions, and

implementing manual search techniques.

Key Concepts of Finding Max and Min in Python

Using Built-in Functions:

The max() function returns the highest

value in a list.

The min() function returns the lowest

value in a list.

Manual Computation:

Iterating through the list to determine the

maximum and minimum values.

Sorting Approach:

Sorting the list and selecting the first and

last elements as min and max.

Example of Maximum and Minimum Values

List Maximum Minimum

[5, 3, 9, 1, 7] 9 1

[12, 24, 36, 48] 48 12

[101, 56, 78, 12] 101 12

Basic Rules for Finding Max and Min in Python

Rule Correct Example

Use max() to

find the

max_value = max(numbers)

maximum

Use min() to find

the minimum
min_value = min(numbers)

Use a loop for

manual search

for num in numbers: if num >

max_value: max_value = num

Syntax Table

S

L

Concep

t
Syntax/Example Description

1
Get user

input

numbers =

list(map(int,

input().split()))

Takes a list of

numbers as input.

2

Find

max

using

max()

max_value =

max(numbers)

Returns the

largest number in

the list.

3

Find min

using

min()

min_value =

min(numbers)

Returns the

smallest number

in the list.

4

Find

max

using a

loop

for num in

numbers: if num >

max_value:

max_value = num

Iterates to find the

maximum

manually.

5

Find min

using

sorting

sorted_list =

sorted(numbers);

min_value =

sorted_list[0]

Sorts and selects

the first element

as the minimum.

Real-Life Project: Finding Max and Min in a List

Project Code:

1. def find_max_min(numbers):

2. max_value = numbers[0]

3. min_value = numbers[0]

4. for num in numbers:

5. if num > max_value:

6. max_value = num

7. if num < min_value:

8. min_value = num

9. return max_value, min_value

10. numbers = list(map(int, input("Enter numbers separated

by space: ").split()))

11. print("Maximum (Using max()):", max(numbers))

12. print("Minimum (Using min()):", min(numbers))

13. max_num, min_num = find_max_min(numbers)

14. print("Maximum (Using loop):", max_num)

15. print("Minimum (Using loop):", min_num)

Project Code Explanation Table

Lin

e
Code Section Description

1
def

find_max_min(numbers):

Defines a function to

find the maximum

and minimum

numbers in a list.

2 max_value = numbers[0]

Initializes the

maximum value

with the first

element of the list.

3 min_value = numbers[0]

Initializes the

minimum value with

the first element of

the list.

4 for num in numbers:
Loops through each

number in the list.

5 if num > max_value:

Checks if the current

number is greater

than max_value .

6 max_value = num

Updates max_value

if a larger number is

found.

7 if num < min_value:

Checks if the current

number is smaller

than min_value .

8 min_value = num

Updates min_value

if a smaller number

is found.

9
return max_value,

min_value

Returns the

calculated maximum

and minimum

values.

10

numbers = list(map(int,

input("Enter numbers

separated by space:

").split()))

Takes user input,

splits it into

individual numbers,

and converts them

into integers.

11
print("Maximum (Using

max()):", max(numbers))

Finds and prints the

maximum number

using the built-in

max() function.

12
print("Minimum (Using

min()):", min(numbers))

Finds and prints the

minimum number

using the built-in

min() function.

13
max_num, min_num =

find_max_min(numbers)

Calls the custom

function to

determine the max

and min values

manually.

14
print("Maximum (Using

loop):", max_num)

Prints the maximum

number found using

the loop method.

15
print("Minimum (Using

loop):", min_num)

Prints the minimum

number found using

the loop method.

Expected Results

The program asks the user to enter a list of

numbers.

It computes the maximum and minimum values

using both built-in functions and a manual

approach.

It prints the results in a structured format.

Hands-On Exercise Try improving the Max and Min Finder

with these additional features:

1. Allow users to input numbers from a file

instead of manually entering them.

2. Display step-by-step max and min

computation for better understanding.

3. Create a GUI version using Tkinter to select

numbers and display results.

4. Extend the program to find the second

highest and second lowest numbers.

5. Optimize the manual approach for large

datasets using heapq module.

Conclusion This Maximum and Minimum Finder project

introduces Python concepts such as list operations, loops,

and sorting techniques. By expanding this project,

developers can explore more efficient methods for handling

large datasets in various applications.

Chapter 44: Square Root Finder

Overview A Square Root Finder is a program that calculates

the square root of a given number. This project helps in

understanding mathematical functions, loops, and built-in

methods in Python.

This chapter covers the step-by-step implementation of

calculating the square root of a number, handling user

input, using built-in functions, and implementing manual

square root estimation techniques.

Key Concepts of Square Root Finder in Python

Using Built-in Functions:

The math.sqrt() function computes the

square root of a number.

The exponentiation operator (**) can

also be used to find square roots.

Manual Computation:

Implementing the Newton-Raphson

method for square root approximation.

Using a loop to estimate the square root

iteratively.

Example Square Root Calculation

Number Square Root

4 2.0

9 3.0

16 4.0

25 5.0

50 7.071

Basic Rules for Square Root Calculation in Python

Rule Correct Example

Use math.sqrt() for square

root
sqrt_value = math.sqrt(x)

Use exponentiation operator sqrt_value = x ** 0.5

Implement Newton’s

method
sqrt_value = 0.5 * (x + y/x)

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

num =

float(input("Enter

number: "))

Takes a number

from the user.

2

Compute

square root

using

math.sqrt()

sqrt_value =

math.sqrt(num)

Uses the built-in

function.

3

Compute

square root

using **

operator

sqrt_value = num

** 0.5

Uses

exponentiation

to find square

root.

4

Implement

Newton’s

method

while

abs(guess*guess -

num) > epsilon:

Uses an iterative

approach to

refine the

square root

value.

5 Print result
print("Square root

is:", sqrt_value)

Displays the

calculated

square root.

Real-Life Project: Square Root Finder

Project Code:

1. import math

2. def sqrt_builtin(num):

3. return math.sqrt(num)

4. def sqrt_exponentiation(num):

5. return num ** 0.5

6. def sqrt_newton(num, epsilon=0.0001):

7. guess = num / 2.0

8. while abs(guess * guess - num) > epsilon:

9. guess = (guess + num / guess) / 2.0

10. return guess

11. num = float(input("Enter a number: "))

12. if num < 0:

13. print("Square root of negative numbers is not real.")

14. else:

15. print("Square Root (Using math.sqrt()):",

sqrt_builtin(num))

16. print("Square Root (Using exponentiation):",

sqrt_exponentiation(num))

17. print("Square Root (Using Newton's Method):",

sqrt_newton(num))

Project Code Explanation Table

Li

ne
Code Section Description

1 import math

Imports the math

module to use the

built-in square root

function.

2-

3
def sqrt_builtin(num):

Defines a function to

compute the square

root using

math.sqrt() .

4-

5

def

sqrt_exponentiation(num)

:

Defines a function to

compute the square

root using the

exponentiation

operator (**).

6
def sqrt_newton(num,

epsilon=0.0001):

Defines a function to

compute the square

root using Newton's

Method with an error

tolerance (epsilon).

7 guess = num / 2.0 Initializes the first

guess as half of the

input number.

8
while abs(guess * guess -

num) > epsilon:

Runs a loop to refine

the square root

approximation until

it converges within

the error tolerance.

9
guess = (guess + num /

guess) / 2.0

Implements

Newton’s formula to

update the guess.

10 return guess

Returns the final

computed square

root.

11
num = float(input("Enter

a number: "))

Takes user input and

converts it into a

floating-point

number.

12 if num < 0:
Checks if the input

number is negative.

13

print("Square root of

negative numbers is not

real.")

Displays an error

message for

negative input

values.

14 else:

Executes the square

root calculations if

the number is non-

negative.

15

print("Square Root (Using

math.sqrt()):",

sqrt_builtin(num))

Calls sqrt_builtin()

and prints the

computed square

root.

16 print("Square Root (Using

exponentiation):",

sqrt_exponentiation(num)

)

Calls

sqrt_exponentiation(

) and prints the

computed square

root.

17

print("Square Root (Using

Newton's Method):",

sqrt_newton(num))

Calls sqrt_newton()

and prints the

computed square

root using Newton’s

method.

Expected Results

The program asks the user to enter a number.

It calculates the square root using three different

methods.

It prints the computed values in a structured

format.

If the user enters a negative number, it displays

an appropriate message.

Hands-On Exercise Try improving the Square Root Finder

with these additional features:

1. Allow users to specify the precision level for

Newton’s method.

2. Extend the program to handle complex

numbers for negative square roots.

3. Create a GUI version using Tkinter for user-

friendly interaction.

4. Compare the execution time of different

methods using the timeit module.

5. Allow users to compute cube roots and

higher roots using the exponentiation

method.

Chapter 45: Count Words in a

Sentence
Overview A Word Counter is a program that calculates the

number of words in a given sentence. This project helps in

understanding string manipulation, loops, and built-in

functions in Python.

This chapter covers the step-by-step implementation of

counting words in a sentence, handling user input, using

built-in functions, and implementing a manual word-

counting method.

Key Concepts of Word Counting in Python

Using Built-in Functions:

The split() function divides a string into

a list of words.

The len() function counts the number of

words.

Manual Computation:

Iterating through the string and counting

spaces to determine word count.

Example Word Count Calculation

Sentence
Word

Count

"Python is fun" 3

"I love programming" 3

"The quick brown fox jumps over the lazy

dog"
9

Basic Rules for Word Counting in Python

Rule Correct Example

Use split() to separate words words = sentence.split()

Use len() to count words word_count = len(words)

Remove extra spaces using sentence =

strip() sentence.strip()

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

sentence =

input("Enter a

sentence: ")

Takes a sentence

from the user.

2

Split

sentence

into

words

words =

sentence.split()

Uses split() to

create a list of

words.

3

Count

words

using

len()

word_count =

len(words)

Uses len() to

determine the

number of words.

4

Remove

extra

spaces

sentence.strip()

Cleans up

unnecessary

spaces at the

beginning and

end.

5
Print

result

print("Word

count:",

word_count)

Displays the

calculated word

count.

Real-Life Project: Word Counter

Project Code:

1. def count_words(sentence):

2. sentence = sentence.strip()

3. words = sentence.split()

4. return len(words)

5. sentence = input("Enter a sentence: ")

6. print("Word count:", count_words(sentence))

Project Code Explanation Table

Lin

e
Code Section Description

1
def

count_words(sentence):

Defines a function to count

words in a sentence.

2
sentence =

sentence.strip()

Removes unnecessary

spaces at the start and end

of the sentence.

3 words = sentence.split()
Splits the sentence into a

list of words.

4 return len(words)
Returns the number of

words in the sentence.

5
sentence = input("Enter

a sentence: ")

Takes user input as a

sentence.

6
print("Word count:",

count_words(sentence))

Calls the function and

prints the word count.

Expected Results

The program asks the user to enter a sentence.

It counts the number of words in the sentence.

It prints the word count as output.

If the user enters an empty string, it prints Word

count: 0 .

Hands-On Exercise Try improving the Word Counter with

these additional features:

1. Allow users to count words from a

paragraph instead of a single sentence.

2. Enhance the program to ignore punctuation

marks while counting words.

3. Create a GUI version using Tkinter for user-

friendly interaction.

4. Allow users to input text from a file and

count words in the document.

5. Display the frequency of each word along

with the total word count.

Conclusion This Word Counter project introduces Python

concepts such as string manipulation, loops, and built-in

functions. By expanding this project, developers can explore

more advanced text-processing techniques.

Chapter 46: Check for Anagram

Strings
Overview An Anagram Checker is a program that

determines whether two given strings are anagrams of each

other. Two words are considered anagrams if they contain

the same characters in the same frequency but in a

different order (e.g., "listen" and "silent").

This chapter covers the step-by-step implementation of

checking anagram strings, handling user input, using built-in

functions, and implementing a manual character count

comparison.

Key Concepts of Anagram Checker in Python

String Manipulation:

Sorting strings and comparing them.

Removing spaces and converting to

lowercase.

Using Built-in Functions:

The sorted() function sorts characters of

the string.

The Counter() function from the

collections module counts character

frequency.

Manual Computation:

Iterating through characters and

counting occurrences.

Example Anagram Checks

String 1 String 2 Anagram?

listen silent Yes

triangle integral Yes

apple paple Yes

hello world No

Basic Rules for Anagram Checking in Python

Rule
Correct

Example

Use sorted() to compare sorted

versions of both words

sorted(str1) ==

sorted(str2)

Use Counter() from collections for

character count comparison

Counter(str1) ==

Counter(str2)

Convert strings to lowercase and

remove spaces before comparison

str1.replace(" ",

"").lower()

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

str1 = input("Enter

first string: ")

Takes first

string from

user.

2

Convert to

lowercase

and

remove

spaces

str1 =

str1.replace(" ",

"").lower()

Prepares the

string for

comparison.

3

Sort and

compare

strings

sorted(str1) ==

sorted(str2)

Uses sorting to

check for

anagram

condition.

4

Use

Counter()

from

collections

Counter(str1) ==

Counter(str2)

Counts

character

frequency for

comparison.

5 Print result

print("Anagram!" if

result else "Not an

Anagram!")

Displays the

result.

Real-Life Project: Anagram Checker

Project Code:

1. from collections import Counter

2. def is_anagram(str1, str2):

3. str1 = str1.replace(" ", "").lower()

4. str2 = str2.replace(" ", "").lower()

5. return Counter(str1) == Counter(str2)

6. str1 = input("Enter first string: ")

7. str2 = input("Enter second string: ")

8. if is_anagram(str1, str2):

9. print("The strings are anagrams.")

10. else:

11. print("The strings are not anagrams.")

Project Code Explanation Table

Lin

e
Code Section Description

1
from collections import

Counter

Imports the Counter

class for character

frequency comparison.

2-5 def is_anagram(str1, str2):

Defines a function to

check if two strings are

anagrams.

3-4 str1.replace(" ", "").lower()

Removes spaces and

converts strings to

lowercase.

5
return Counter(str1) ==

Counter(str2)

Compares character

frequency using

Counter() .

6
str1 = input("Enter first

string: ")

Takes the first string

input.

7
str2 = input("Enter second

string: ")

Takes the second string

input.

8-9

if is_anagram(str1, str2):

print("The strings are

anagrams.")

Prints result if strings

are anagrams.

10-

11

else: print("The strings are

not anagrams.")

Prints result if strings

are not anagrams.

Expected Results

The program asks the user to enter two strings.

It removes spaces and converts the strings to

lowercase.

It compares the character frequency of both

strings.

It prints whether the two strings are anagrams or

not.

Hands-On Exercise Try improving the Anagram Checker

with these additional features:

1. Allow users to enter multiple pairs of strings

for checking.

2. Display character frequency counts for both

words before comparison.

3. Create a GUI version using Tkinter for

interactive input.

4. Allow checking for anagrams from a file

input instead of manual entry.

5. Enhance the program to check for multi-

word anagrams (e.g., "New York Times" vs.

"Monkeys write").

Chapter 47: Simple String

Encryption and Decryption
Overview A Simple String Encryption and Decryption

program is used to encode and decode messages for basic

security. This project helps in understanding character

manipulation, ASCII conversions, loops, and basic

cryptographic techniques in Python.

This chapter covers the step-by-step implementation of

encrypting and decrypting a string using methods such as

Caesar cipher and ASCII shifting.

Key Concepts of String Encryption and Decryption in

Python

Character Manipulation:

Shifting character ASCII values.

Using loops to modify each character in a

string.

Using Built-in Functions:

The ord() function converts a character

to its ASCII value.

The chr() function converts an ASCII

value back to a character.

Basic Encryption Methods:

Caesar cipher (shifting characters by a

fixed number of positions).

XOR encryption for simple bitwise

encoding.

Example of Encryption and Decryption

Plain Text Encrypted (Shift 3) Decrypted

Hello Khoor Hello

Python Sbwkrq Python

Encrypt Hqfubsw Encrypt

Basic Rules for Encryption and Decryption in Python

Rule Correct Example

Use ord() and chr() to

shift characters
chr(ord(char) + shift)

Ensure characters remain

within ASCII bounds

new_char = chr((ord(char) - 97

+ shift) % 26 + 97)

Reverse the shift to

decrypt
chr(ord(char) - shift)

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

message =

input("Enter text: ")

Takes text

from the user.

2
Encrypt

using shift

encrypted =

''.join(chr(ord(c) +

shift) for c in text)

Shifts each

character by

shift positions.

3

Decrypt

using

reverse

shift

decrypted =

''.join(chr(ord(c) -

shift) for c in text)

Restores

characters by

reversing the

shift.

4

Handle

non-

alphabetic

character

s

if char.isalpha():

Ensures only

letters are

encrypted.

5
Print

results

print("Encrypted

text:",

encrypted_text)

Displays

encrypted

text.

Real-Life Project: String Encryption and Decryption

Project Code:

1. def encrypt(text, shift):

2. encrypted_text = ""

3. for char in text:

4. if char.isalpha():

5. shift_base = 65 if char.isupper() else 97

6. encrypted_text += chr((ord(char) - shift_base +

shift) % 26 + shift_base)

7. else:

8. encrypted_text += char

9. return encrypted_text

10. def decrypt(text, shift):

11. decrypted_text = ""

12. for char in text:

13. if char.isalpha():

14. shift_base = 65 if char.isupper() else 97

15. decrypted_text += chr((ord(char) - shift_base -

shift) % 26 + shift_base)

16. else:

17. decrypted_text += char

18. return decrypted_text

19. text = input("Enter text: ")

20. shift = int(input("Enter shift value: "))

21. encrypted_text = encrypt(text, shift)

22. print("Encrypted text:", encrypted_text)

23. decrypted_text = decrypt(encrypted_text, shift)

24. print("Decrypted text:", decrypted_text)

Project Code Explanation Table

Lin

e
Code Section Description

1 def encrypt(text, shift):

Defines the function

to encrypt a text by

shifting its characters.

2 encrypted_text = ""

Initializes an empty

string to store the

encrypted text.

3 for char in text:

Loops through each

character in the input

text.

4 if char.isalpha():

Checks if the

character is an

alphabet letter

(ignores numbers and

symbols).

5
shift_base = 65 if

char.isupper() else 97

Determines whether

the character is

uppercase or

lowercase and assigns

the respective ASCII

base value.

6

encrypted_text +=

chr((ord(char) -

shift_base + shift) % 26

+ shift_base)

Encrypts the

character by shifting

it within the alphabet.

7-8
else: encrypted_text

+= char

Keeps non-alphabetic

characters

unchanged.

9 return encrypted_text
Returns the final

encrypted string.

10 def decrypt(text, shift):

Defines the function

to decrypt a text by

reversing the shift.

11 decrypted_text = ""

Initializes an empty

string to store the

decrypted text.

12 for char in text:

Loops through each

character in the

encrypted text.

13 if char.isalpha():

Checks if the

character is an

alphabet letter before

decryption.

14 shift_base = 65 if Determines if the

char.isupper() else 97 character is

uppercase or

lowercase.

15

decrypted_text +=

chr((ord(char) -

shift_base - shift) % 26

+ shift_base)

Reverses the

encryption shift to

restore the original

character.

16-

17

else: decrypted_text

+= char

Keeps non-alphabetic

characters

unchanged.

18 return decrypted_text
Returns the final

decrypted text.

19
text = input("Enter

text: ")

Prompts the user to

enter the text to

encrypt.

20
shift = int(input("Enter

shift value: "))

Takes the shift value

from the user.

21
encrypted_text =

encrypt(text, shift)

Calls the encrypt

function and stores

the encrypted text.

22
print("Encrypted text:",

encrypted_text)

Displays the

encrypted text.

23

decrypted_text =

decrypt(encrypted_text,

shift)

Calls the decrypt

function and restores

the original text.

24
print("Decrypted text:",

decrypted_text)

Displays the

decrypted text.

Expected Results

The program asks the user to enter a message

and a shift value.

It encrypts the message by shifting characters

forward.

It then decrypts the message by shifting

characters backward.

The program displays both the encrypted and

decrypted messages.

Hands-On Exercise Try improving the Encryption and

Decryption program with these additional features:

1. Allow users to choose between different

encryption techniques (e.g., XOR, Base64,

Vigenère cipher).

2. Handle numbers and special characters

using a separate encoding scheme.

3. Create a GUI version using Tkinter for

easier interaction.

4. Enable encryption and decryption of entire

files instead of just strings.

5. Compare the security of different encryption

techniques using randomness analysis.

Conclusion This Simple String Encryption and Decryption

project introduces Python concepts such as character

manipulation, loops, and ASCII conversions. By expanding

this project, developers can explore more advanced

cryptographic techniques for secure data handling.

Chapter 48: Number Guessing

Game with GUI
Overview A Number Guessing Game with a Graphical User

Interface (GUI) is an interactive game where the user

guesses a randomly selected number within a given range.

The game provides feedback (e.g., "Too High" or "Too Low")

until the user correctly guesses the number.

This chapter covers the step-by-step implementation of

creating a number guessing game with a GUI using Tkinter

in Python.

Key Concepts of Number Guessing Game with GUI in

Python

Random Number Generation:

Using the random.randint() function to

generate a random number.

GUI with Tkinter:

Creating an interactive interface with

labels, buttons, and input fields.

User Input Handling:

Taking the user’s guess and validating it.

Providing feedback on each guess.

Example Game Flow

User Guess System Response

10 Too low! Try again.

50 Too high! Try again.

25 Correct! You guessed it!

Basic Rules for Number Guessing Game in Python

Rule Correct Example

Generate a random number

within a range
random.randint(1, 100)

Get user input from a GUI user_guess =

entry box int(entry.get())

Compare guess and provide

feedback

if guess > target: print("Too

high!")

Syntax Table

S

L

Concep

t
Syntax/Example Description

1
Import

modules

import tkinter as tk,

random

Imports Tkinter

for GUI and

random for

number

generation.

2

Generat

e

random

number

target =

random.randint(1,

100)

Generates a

secret number.

3

Create

GUI

window

root = tk.Tk()

Initializes the

Tkinter

window.

4
Get user

input
entry.get()

Retrieves user

input from the

entry field.

5

Provide

feedbac

k

label.config(text="Too

High!")

Updates label

text with

feedback.

Real-Life Project: Number Guessing Game with GUI

Project Code:

1. import tkinter as tk

2. import random

3. target_number = random.randint(1, 100)

4. attempts = 0

5. def check_guess():

6. global attempts

7. try:

8. guess = int(entry.get())

9. attempts += 1

10. if guess < target_number:

11. label_feedback.config(text="Too Low! Try

Again.")

12. elif guess > target_number:

13. label_feedback.config(text="Too High! Try

Again.")

14. else:

15. label_feedback.config(text=f"Congratulations!

You guessed it in {attempts} attempts.")

16. entry.config(state='disabled')

17. button_guess.config(state='disabled')

18. except ValueError:

19. label_feedback.config(text="Invalid input! Enter a

number.")

20. root = tk.Tk()

21. root.title("Number Guessing Game")

22. label_instruction = tk.Label(root, text="Guess a number

between 1 and 100")

23. label_instruction.pack()

24. entry = tk.Entry(root)

25. entry.pack()

26. button_guess = tk.Button(root, text="Submit",

command=check_guess)

27. button_guess.pack()

28. label_feedback = tk.Label(root, text="")

29. label_feedback.pack()

30. root.mainloop()

Project Code Explanation Table

Li

ne
Code Section Description

1-

2

import tkinter as tk, random Imports

necessary

libraries for

GUI creation

and random

number

generation.

3
target_number = random.randint(1,

100)

Generates a

random

target

number

between 1

and 100.

4 attempts = 0

Initializes an

attempt

counter to

track the

number of

guesses.

5 def check_guess():

Defines a

function to

check the

user’s guess

against the

target

number.

6 global attempts

Declares

attempts as

a global

variable to

modify it

inside the

function.

7-

8

try: guess = int(entry.get()) Retrieves

the user’s

input from

the entry

field and

converts it

to an

integer.

9 attempts += 1

Increments

the attempt

counter

each time

the user

submits a

guess.

10

-

11

if guess < target_number:

Checks if the

guess is

lower than

the target

and updates

the

feedback

label.

12

-

13

elif guess > target_number:

Checks if the

guess is

higher than

the target

and updates

the

feedback

label.

14

-

15

else:

If the guess

matches the

target

number,

displays a

congratulato

ry message

with the

number of

attempts.

16 entry.config(state='disabled')

Disables the

entry field

after the

correct

guess.

17
button_guess.config(state='disable

d')

Disables the

submit

button after

the correct

guess.

18

-

19

except ValueError:

Handles

invalid (non-

numeric)

input and

displays an

error

message.

20 root = tk.Tk()

Creates the

main Tkinter

window.

21
root.title("Number Guessing

Game")

Sets the

window title.

22

-

23

label_instruction = tk.Label(root,

text="Guess a number between 1

and 100")

Displays

game

instructions

using a

label.

24

-

25

entry = tk.Entry(root)

Creates an

input field

for the user

to enter

guesses.

26

-

27

button_guess = tk.Button(root,

text="Submit",

command=check_guess)

Creates a

button that

calls

check_guess

() when

clicked.

28

-

29

label_feedback = tk.Label(root,

text="")

Creates a

label to

display

feedback

messages.

30 root.mainloop()

Starts the

Tkinter

event loop,

keeping the

GUI running.

Expected Results

The program launches a GUI window with an entry

field and a submit button.

The user enters a guess and clicks "Submit".

The program provides feedback on whether the

guess is too high, too low, or correct.

The game ends when the correct number is

guessed, and the input field is disabled.

Hands-On Exercise Try improving the Number Guessing

Game with these additional features:

1. Allow users to restart the game after a

correct guess.

2. Implement a timer to track how long it takes

to guess correctly.

3. Add a difficulty level (e.g., Easy: 1-50, Hard:

1-200).

4. Improve UI design by using tkinter.ttk for

better styling.

5. Save previous scores and display a

leaderboard.

Conclusion This Number Guessing Game with GUI

introduces Python concepts such as event handling, GUI

programming with Tkinter, and random number generation.

By expanding this project, developers can create more

interactive and visually appealing games.

Chapter 49: String to Title Case

Converter
Overview A Title Case Converter is a program that

transforms a given string so that the first letter of each word

is capitalized while the rest remain in lowercase. This project

helps in understanding string manipulation, built-in

functions, and user input handling in Python.

This chapter covers the step-by-step implementation of

converting a string to title case, handling user input, using

built-in functions, and implementing manual title case

conversion.

Key Concepts of Title Case Conversion in Python

Using Built-in Functions:

The title() method capitalizes the first

letter of each word.

The capitalize() method capitalizes only

the first letter of the sentence.

Manual Computation:

Splitting the string into words and

capitalizing each word.

Handling special cases such as articles

and prepositions.

Example Title Case Conversion

Input String Title Case Output

"hello world" "Hello World"

"python is fun" "Python Is Fun"

"tHis is A tEsT" "This Is A Test"

Basic Rules for Title Case Conversion in Python

Rule Correct Example

Use title() to capitalize

words
string.title()

Use split() and

capitalize() for manual

conversion

[word.capitalize() for word in

string.split()]

Handle exceptions for

articles/prepositions

word.lower() if word in

stopwords else

word.capitalize()

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

text = input("Enter a

string: ")

Takes input

from the

user.

2

Convert

using

title()

title_text = text.title()

Uses built-in

function for

title case

conversion.

3
Convert

manually

title_text = "

".join([word.capitalize()

for word in text.split()])

Splits,

capitalizes,

and joins

words back

together.

4

Handle

exception

s

if word.lower() in

stopwords:

Keeps

certain

words in

lowercase.

5
Print

result

print("Title Case:",

title_text)

Displays the

converted

string.

Real-Life Project: Title Case Converter

Project Code:

1. def convert_to_title_case(text):

2. stopwords = {"a", "an", "the", "in", "on", "at", "to",

"with", "for", "but", "or", "and"}

3. words = text.lower().split()

4. title_cased_words = [words[0].capitalize()] + [word if

word in stopwords else word.capitalize() for word in

words[1:]]

5. return " ".join(title_cased_words)

6. text = input("Enter a string: ")

7. print("Title Case (Using title()):", text.title())

8. print("Title Case (Manual Method):",

convert_to_title_case(text))

Project Code Explanation Table

Lin

e
Code Section Description

1 def convert_to_title_case(text):

Defines a function

to manually

convert text to

title case.

2

stopwords = {"a", "an", "the",

"in", "on", "at", "to", "with",

"for", "but", "or", "and"}

Defines a set of

words that should

not be capitalized

unless they are

the first word.

3 words = text.lower().split()

Converts the

string to lowercase

and splits it into

words.

4

title_cased_words =

[words[0].capitalize()] + [word if

word in stopwords else

word.capitalize() for word in

words[1:]]

Capitalizes the

first word and

applies title case

rules to the

remaining words.

5 return " ".join(title_cased_words)

Joins the words

back into a

sentence.

6 text = input("Enter a string: ") Takes user input.

7
print("Title Case (Using title()):",

text.title())

Uses Python’s

built-in title()

method for title

case conversion.

8

print("Title Case (Manual

Method):",

convert_to_title_case(text))

Calls the custom

function to convert

text to title case

manually.

Expected Results

The program asks the user to enter a string.

It converts the string to title case using both

title() and manual processing.

It prints both results.

Special words (like "a", "an", "the") remain in

lowercase unless they appear at the start of the

sentence.

Hands-On Exercise Try improving the Title Case Converter

with these additional features:

1. Allow users to choose between built-in and

manual conversion methods.

2. Enhance the manual method to handle

punctuation properly.

3. Create a GUI version using Tkinter for

interactive input.

4. Enable batch conversion for multiple

sentences at once.

5. Save converted text to a file for later use.

Conclusion This Title Case Converter project introduces

Python concepts such as string manipulation, list

comprehensions, and user input handling. By expanding this

project, developers can create more advanced text-

processing applications.

Chapter 50: Days Between Two

Dates Calculator
Overview A Days Between Two Dates Calculator is a

program that computes the number of days between two

given dates. This project helps in understanding date

handling, built-in Python libraries, and user input validation.

This chapter covers the step-by-step implementation of

calculating the difference between two dates, handling user

input, and formatting output.

Key Concepts of Days Between Two Dates Calculation

in Python

Using Built-in datetime Module:

datetime.strptime() to convert string

dates into datetime objects.

timedelta.days to calculate the number

of days between two dates.

User Input Handling:

Accepting date inputs in a specific

format.

Validating input to ensure correct date

format.

Example Date Calculations

Start Date End Date Days Between

2023-01-01 2023-01-10 9

2022-06-15 2023-06-15 365

2021-12-31 2022-01-01 1

Basic Rules for Date Calculation in Python

Rule Correct Example

Convert string to

date

date_object =

datetime.strptime(date_string, "%Y-

%m-%d")

Find difference

between dates
delta = end_date - start_date

Extract days

from difference
days_between = delta.days

Syntax Table

S

L
Concept Syntax/Example

Descriptio

n

1

Import

datetim

e

module

from datetime import

datetime

Imports

necessary

module for

date

handling.

2

Convert

string to

date

date_object =

datetime.strptime("2023-

01-01", "%Y-%m-%d")

Converts a

date string

to a

datetime

object.

3

Compute

date

differenc

e

delta = end_date -

start_date

Finds the

difference

between

two dates.

4

Extract

number

of days

days_between =

delta.days

Retrieves

the total

days from

the

difference.

5
Print

result

print("Days Between:",

days_between)

Displays the

calculated

days.

Real-Life Project: Days Between Two Dates Calculator

Project Code:

1. from datetime import datetime

2. def days_between_dates(start, end):

3. try:

4. start_date = datetime.strptime(start, "%Y-%m-%d")

5. end_date = datetime.strptime(end, "%Y-%m-%d")

6. delta = end_date - start_date

7. return delta.days

8. except ValueError:

9. return "Invalid date format! Use YYYY-MM-DD."

10. start_date = input("Enter the start date (YYYY-MM-DD):

")

11. end_date = input("Enter the end date (YYYY-MM-DD): ")

12. result = days_between_dates(start_date, end_date)

13. print("Days Between:", result)

Project Code Explanation Table

Li

ne
Code Section Description

1 from datetime import datetime

Imports the

datetime module

for date handling.

2
def days_between_dates(start,

end):

Defines a function

to compute days

between two dates.

3 try:

Handles exceptions

in case of invalid

date input.

4-5
datetime.strptime(start, "%Y-

%m-%d")

Converts the input

date strings into

datetime objects.

6 delta = end_date - start_date

Finds the difference

between the two

dates.

7 return delta.days

Returns the number

of days between

the two dates.

8-9 except ValueError:

Catches errors if

the user enters an

incorrectly

formatted date.

10-

11
start_date = input(...)

Takes user input for

the start and end

dates.

12

result =

days_between_dates(start_date

, end_date)

Calls the function

to calculate the

difference.

13 print("Days Between:", result)

Displays the

calculated number

of days.

Expected Results

The program asks the user to enter two dates in

YYYY-MM-DD format.

It computes the difference in days between the

two dates.

It prints the result.

If the user enters an invalid date format, an error

message is displayed.

Chapter 51: Fibonacci Series

Using Recursion
Overview The Fibonacci series is a sequence of numbers

where each number is the sum of the two preceding ones,

starting from 0 and 1. This project demonstrates the

implementation of the Fibonacci series using recursion in

Python.

This chapter covers the step-by-step implementation of the

Fibonacci series using recursion, handling user input, and

optimizing performance.

Key Concepts of Fibonacci Series Using Recursion in

Python

Recursive Function:

A function that calls itself to solve

smaller instances of a problem.

Base cases to stop infinite recursion.

Mathematical Definition:

F(n)=F(n−1)+F(n−2)F(n) = F(n-1) + F(n-

2) where F(0)=0,F(1)=1F(0) = 0, F(1) =

1

Performance Considerations:

Recursive calls can be inefficient for large

numbers.

Using memoization to store computed

values for faster execution.

Example Fibonacci Sequence

Input

(n)
Output (First n Fibonacci Numbers)

5 0, 1, 1, 2, 3

8 0, 1, 1, 2, 3, 5, 8, 13

10 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Basic Rules for Fibonacci Series in Python

Rule Correct Example

Base case for

recursion
if n == 0 or n == 1: return n

Recursive call
return fibonacci(n-1) + fibonacci(n-

2)

Use memoization to

optimize

cache[n] = fibonacci(n-1) +

fibonacci(n-2)

Syntax Table

S

L
Concept Syntax/Example Description

1

Define

recursive

function

def fibonacci(n):

Defines a function

to compute

Fibonacci numbers

recursively.

2
Base

condition

if n == 0 or n ==

1: return n

Stops recursion at

base cases.

3
Recursive

call

return fibonacci(n-

1) + fibonacci(n-

2)

Computes

Fibonacci numbers

recursively.

4
Get user

input

num =

int(input("Enter a

number: "))

Takes user input

for the number of

terms.

5
Print

result
print(fibonacci(n))

Displays the

Fibonacci

sequence.

Real-Life Project: Fibonacci Series Using Recursion

Project Code:

1. def fibonacci(n):

2. if n == 0:

3. return 0

4. elif n == 1:

5. return 1

6. else:

7. return fibonacci(n-1) + fibonacci(n-2)

8. num = int(input("Enter the number of terms: "))

9. print("Fibonacci Series:", [fibonacci(i) for i in

range(num)])

Project Code Explanation Table

Lin

e
Code Section Description

1 def fibonacci(n):

Defines a recursive

function to compute

Fibonacci numbers.

2 if n == 0:
Base case: returns 0 when

n is 0.

3 return 0
Returns 0 as the first

Fibonacci number.

4 elif n == 1:
Base case: returns 1 when

n is 1.

5 return 1
Returns 1 as the second

Fibonacci number.

6-7
else: return fibonacci(n-

1) + fibonacci(n-2)

Computes the Fibonacci

number by summing the

previous two numbers.

8
num = int(input("Enter

the number of terms: "))

Takes user input for the

number of terms.

9

print("Fibonacci Series:",

[fibonacci(i) for i in

range(num)])

Computes and prints the

Fibonacci sequence up to

num terms.

Expected Results

The program asks the user to enter the number of

Fibonacci terms.

It recursively calculates and prints the Fibonacci

sequence up to the specified term.

If the user enters a large number, execution may

be slow due to redundant recursive calls.

Chapter 52: Countdown Timer

Using Tkinter
Overview A Countdown Timer with a Graphical User

Interface (GUI) is a program that counts down from a

specified time and updates dynamically. This project helps in

understanding event-driven programming, time handling,

and GUI development using Tkinter in Python.

This chapter covers the step-by-step implementation of a

countdown timer with a Tkinter GUI, handling user input,

updating the timer dynamically, and providing a start/reset

functionality.

Key Concepts of Countdown Timer Using Tkinter in

Python

Using Tkinter for GUI Development:

Creating labels, buttons, and input fields.

Updating the GUI dynamically.

Using time and after() for Timer Execution:

The after() method to update the

countdown at one-second intervals.

Formatting time values for display.

User Input Handling:

Accepting and validating user input for

countdown time.

Restarting or resetting the timer.

Example Countdown Timer Execution

User

Input
Timer Countdown

10 seconds 10 → 9 → 8 ... 1 → "Time's Up!"

5 seconds 5 → 4 → 3 → 2 → 1 → "Time's Up!"

Basic Rules for Countdown Timer in Python

Rule Correct Example

Use after() for real- root.after(1000, update_timer)

time countdown

Convert user input to

integer
time_left = int(entry.get())

Stop countdown at

zero

if time_left <= 0:

label.config(text="Time's Up!")

Syntax Table

S

L

Concep

t
Syntax/Example

Descriptio

n

1
Import

modules
import tkinter as tk

Imports

Tkinter for

GUI

creation.

2

Create

GUI

window

root = tk.Tk()

Initializes

the main

Tkinter

window.

3
Get user

input
entry.get()

Retrieves

user input

from the

entry field.

4

Update

timer

every

second

root.after(1000,

update_timer)

Calls the

update

function

every

second.

5

Stop

timer

when

zero

if time_left <= 0:

label.config(text="Time's

Up!")

Displays

message

when

countdown

reaches

zero.

Real-Life Project: Countdown Timer with Tkinter

Project Code:

1. import tkinter as tk

2. from tkinter import messagebox

3. def start_timer():

4. global time_left

5. try:

6. time_left = int(entry.get())

7. update_timer()

8. except ValueError:

9. messagebox.showerror("Invalid Input", "Please

enter a valid number.")

10. def update_timer():

11. global time_left

12. if time_left > 0:

13. label.config(text=f"Time Left: {time_left} sec")

14. time_left -= 1

15. root.after(1000, update_timer)

16. else:

17. label.config(text="Time's Up!")

18. def reset_timer():

19. global time_left

20. time_left = 0

21. label.config(text="Enter Time and Press Start")

22. root = tk.Tk()

23. root.title("Countdown Timer")

24. label = tk.Label(root, text="Enter Time in Seconds",

font=("Arial", 14))

25. label.pack()

26. entry = tk.Entry(root)

27. entry.pack()

28. start_button = tk.Button(root, text="Start",

command=start_timer)

29. start_button.pack()

30. reset_button = tk.Button(root, text="Reset",

command=reset_timer)

31. reset_button.pack()

32. root.mainloop()

Project Code Explanation Table

Lin

e
Code Section Description

1-2
import tkinter as tk,

messagebox

Imports necessary

libraries for GUI and

alerts.

3-9 def start_timer():
Defines a function to

start the countdown.

6 time_left = int(entry.get())

Retrieves and

converts user input

to an integer.

7 update_timer()

Calls the function to

start updating the

timer.

8-9 except ValueError:

Displays an error

message if input is

invalid.

10-

17
def update_timer():

Defines a function to

update the timer

every second.

12-

15
if time_left > 0:

Updates the label

and decrements the

timer.

16-

17
else:

Stops countdown

and displays "Time’s

Up!".

18-

21
def reset_timer():

Defines a function to

reset the timer.

22-

23
root = tk.Tk()

Creates the main

Tkinter window.

24-

25

label = tk.Label(root,

text="Enter Time in Seconds")

Creates a label to

display instructions.

26-

27
entry = tk.Entry(root)

Creates an entry box

for user input.

28- start_button = tk.Button(root, Creates a button to

29 text="Start",

command=start_timer)

start the countdown.

30-

31

reset_button = tk.Button(root,

text="Reset",

command=reset_timer)

Creates a button to

reset the timer.

32 root.mainloop()

Runs the Tkinter

event loop to keep

the GUI active.

Expected Results

The program launches a GUI window with an entry

field and buttons.

The user enters a time in seconds and clicks

"Start".

The countdown timer updates dynamically every

second.

When the timer reaches zero, "Time's Up!" is

displayed.

The user can reset the timer using the "Reset"

button.

Hands-On Exercise Try improving the Countdown Timer

with these additional features:

1. Allow users to pause and resume the

countdown.

2. Add sound notifications when the timer

reaches zero.

3. Create a GUI version with a progress bar

showing remaining time.

4. Enable a countdown that automatically

starts when the program runs.

5. Allow users to enter time in minutes and

seconds instead of just seconds.

Conclusion This Countdown Timer with Tkinter project

introduces Python concepts such as event-driven

programming, real-time updates, and GUI development. By

expanding this project, developers can create more

advanced and user-friendly timers for various applications.

Chapter 53: Check if a Year is

Leap Year
Overview A Leap Year Checker is a program that

determines whether a given year is a leap year or not. A

leap year is a year that is evenly divisible by 4, except for

years that are both divisible by 100 and not divisible by 400.

This project helps in understanding conditional statements

and logical operations in Python.

This chapter covers the step-by-step implementation of

checking for leap years, handling user input, and validating

the year.

Key Concepts of Leap Year Checker in Python

Leap Year Conditions:

A year is a leap year if it is divisible by 4.

However, if the year is also divisible by

100, it must be divisible by 400 to be a

leap year.

Using Conditional Statements:

Implementing if-elif-else conditions to

check leap year rules.

Example Leap Year Checks

Year Leap Year?

2020 Yes

2023 No

1900 No

2000 Yes

Basic Rules for Leap Year Calculation in Python

Rule Correct Example

Year is divisible by 4 year % 4 == 0

Year is divisible by 100 but

not 400

year % 100 == 0 and year

% 400 != 0

Use if-elif-else for decision-

making
if (condition):

Syntax Table

SL Concept
Syntax/Examp

le
Description

1
Get user

input

year =

int(input("Enter

a year: "))

Takes user input

and converts it to

an integer.

2

Check

divisibility

by 4

if year % 4 ==

0:

Checks if the year is

divisible by 4.

3

Check

special

rule for

century

years

if year % 100

== 0 and year

% 400 != 0:

Ensures century

years are only leap

years if divisible by

400.

4
Print

result

print("Leap

Year")

Displays whether

the year is a leap

year or not.

Real-Life Project: Leap Year Checker

Project Code:

1. def is_leap_year(year):

2. if year % 4 == 0:

3. if year % 100 == 0:

4. if year % 400 == 0:

5. return True

6. else:

7. return False

8. else:

9. return True

10. else:

11. return False

12. year = int(input("Enter a year: "))

13. if is_leap_year(year):

14. print(f"{year} is a Leap Year.")

15. else:

16. print(f"{year} is NOT a Leap Year.")

Project Code Explanation Table

Lin

e
Code Section Description

1
def

is_leap_year(year):

Defines a function to check if a

year is a leap year.

2 if year % 4 == 0:
Checks if the year is divisible

by 4.

3 if year % 100 == 0:
Checks if the year is a century

year.

4-5 if year % 400 == 0:
Confirms if a century year is

also divisible by 400.

6-7 else: return False

If a century year is not

divisible by 400, it's not a leap

year.

8-9 else: return True
Non-century years divisible by

4 are leap years.

10-

11
else: return False

Years not divisible by 4 are not

leap years.

12

year =

int(input("Enter a

year: "))

Takes user input and converts

it to an integer.

13-

16

if

is_leap_year(year):

Calls the function and prints

whether the year is a leap

year.

Expected Results

The program asks the user to enter a year.

It checks if the entered year satisfies leap year

conditions.

It prints whether the year is a leap year or not.

Hands-On Exercise Try improving the Leap Year Checker

with these additional features:

1. Allow users to check a range of years

instead of just one.

2. Create a GUI version using Tkinter to enter

the year and display the result.

3. Allow the user to check leap years in both

the past and future.

4. Modify the program to print all leap years in

the last century.

5. Store checked years in a list and allow users

to view previously checked years.

Conclusion This Leap Year Checker project introduces

Python concepts such as conditional statements, logical

operations, and user input handling. By expanding this

project, developers can create more advanced date-related

applications.

Chapter 54: Find All Divisors of

a Number
Overview A program to find all divisors of a number is

useful in mathematics and number theory applications. A

divisor of a number is any integer that divides it without

leaving a remainder. This project helps in understanding

loops, conditional statements, and efficient algorithms in

Python.

This chapter covers the step-by-step implementation of

finding all divisors of a given number, handling user input,

and optimizing performance.

Key Concepts of Finding Divisors in Python

Definition of Divisors:

A number nn is divisible by dd if nmod  

d=0n \mod d = 0 .

The divisors of nn include all numbers

between 1 and nn that divide nn

evenly.

Using Loops and Conditional Statements:

Iterating through numbers from 1 to nn

and checking divisibility.

Using efficient algorithms to reduce

computation time.

Example Divisor Calculations

Number Divisors

12 1, 2, 3, 4, 6, 12

15 1, 3, 5, 15

25 1, 5, 25

36 1, 2, 3, 4, 6, 9, 12, 18, 36

Basic Rules for Finding Divisors in Python

Rule Correct Example

Use modulus to check

divisibility
if n % i == 0:

Loop through numbers up

to n
for i in range(1, n+1):

Optimize by looping up to

sqrt(n)

for i in range(1, int(n**0.5) +

1):

Syntax Table

S

L
Concept Syntax/Example Description

1
Get user

input

num =

int(input("Enter a

number: "))

Takes user input

as an integer.

2

Use a

loop to

find

divisors

for i in range(1,

num + 1):

Iterates through

possible divisors.

3

Check

divisibilit

y

if num % i == 0:

Identifies numbers

that divide num

evenly.

4
Print

divisors
print(divisors)

Displays the list of

divisors.

Real-Life Project: Finding Divisors of a Number

Project Code:

1. def find_divisors(n):

2. divisors = []

3. for i in range(1, int(n**0.5) + 1):

4. if n % i == 0:

5. divisors.append(i)

6. if i != n // i:

7. divisors.append(n // i)

8. return sorted(divisors)

9. num = int(input("Enter a number: "))

10. print(f"Divisors of {num}:", find_divisors(num))

Project Code Explanation Table

Lin

e
Code Section Description

1 def find_divisors(n):
Defines a function to find all

divisors of a number.

2 divisors = []
Initializes an empty list to

store divisors.

3
for i in range(1,

int(n**0.5) + 1):

Loops from 1 to the square

root of n for efficiency.

4 if n % i == 0:
Checks if i is a divisor of

n .

5 divisors.append(i)
Adds i to the list of

divisors.

6-7 if i != n // i:

Adds the complementary

divisor to the list if different

from i .

8 return sorted(divisors)
Sorts and returns the list of

divisors.

9
num = int(input("Enter

a number: "))

Takes user input as an

integer.

10

print(f"Divisors of

{num}:",

find_divisors(num))

Calls the function and prints

the divisors.

Expected Results

The program asks the user to enter a number.

It calculates and prints all divisors of the given

number.

If the number is prime, it prints only 1 and the

number itself.

Hands-On Exercise Try improving the Find Divisors

program with these additional features:

1. Allow users to check divisors for multiple

numbers in a single run.

2. Enhance the program to identify prime

numbers.

3. Create a GUI version using Tkinter for

interactive input.

4. Display the sum of all divisors as an

additional feature.

5. Allow users to find the greatest common

divisor (GCD) of two numbers.

Conclusion This Find Divisors project introduces Python

concepts such as loops, conditionals, and mathematical

operations. By expanding this project, developers can

explore more advanced number-theory applications like

factorization and prime detection.

Chapter 55: Factorial Calculator

Using Recursion
Overview A Factorial Calculator computes the factorial of a

given number using recursion. The factorial of a number nn

is defined as:

n!=n×(n−1)×(n−2)×...×1n! = n \times (n-1) \times (n-2)

\times ... \times 1

with the base case:

0!=10! = 1

This project helps in understanding recursion, base cases,

and function calls in Python.

This chapter covers the step-by-step implementation of

computing the factorial using recursion, handling user input,

and optimizing performance.

Key Concepts of Factorial Calculation Using Recursion

in Python

Mathematical Definition:

n!=n×(n−1)!n! = n \times (n-1)!

Base case: 0!=10! = 1

Recursive Function:

A function that calls itself to compute

smaller subproblems.

Performance Considerations:

Recursive calls consume memory due to

function stack usage.

Example Factorial Calculations

Input (n) Factorial (n!)

3 6

5 120

7 5040

10 3,628,800

Basic Rules for Factorial Calculation in Python

Rule Correct Example

Base case for

recursion
if n == 0: return 1

Recursive call return n * factorial(n-1)

Ensure valid input if n < 0: print("Invalid input")

Syntax Table

S

L
Concept Syntax/Example Description

1

Define

recursive

function

def factorial(n):

Defines a function

to compute

factorial

recursively.

2
Base

condition

if n == 0: return

1

Stops recursion

when n is 0.

3
Recursive

call

return n *

factorial(n-1)

Calls the function

recursively to

compute factorial.

4
Get user

input

num =

int(input("Enter a

number: "))

Takes user input as

an integer.

5
Print

result

print("Factorial:",

factorial(n))

Displays the

factorial result.

Real-Life Project: Factorial Calculator Using Recursion

Project Code:

1. def factorial(n):

2. if n == 0:

3. return 1

4. else:

5. return n * factorial(n-1)

6. num = int(input("Enter a number: "))

7. if num < 0:

8. print("Factorial is not defined for negative numbers.")

9. else:

10. print(f"Factorial of {num} is: {factorial(num)}")

Project Code Explanation Table

Lin

e
Code Section Description

1 def factorial(n):

Defines a recursive

function to compute

factorial.

2 if n == 0:
Base case: returns 1

when n is 0.

3 return 1 Returns 1 for 0! .

4-5
else: return n *

factorial(n-1)

Recursively calls the

function to compute

factorial.

6
num = int(input("Enter a

number: "))

Takes user input and

converts it to an integer.

7-8 if num < 0:

Checks if the number is

negative and prints an

error message.

9-

10

else: print(f"Factorial of

{num} is:

{factorial(num)}")

Calls the function and

prints the factorial result.

Expected Results

The program asks the user to enter a number.

It recursively calculates and prints the factorial of

the entered number.

If the user enters a negative number, an error

message is displayed.

Hands-On Exercise Try improving the Factorial Calculator

with these additional features:

1. Use memoization to store previously

computed values for optimization.

2. Implement an iterative version of the

factorial function.

3. Create a GUI version using Tkinter for

interactive input.

4. Extend the program to compute double

factorial (n!!).

Conclusion This Factorial Calculator using Recursion project

introduces Python concepts such as recursion, base cases,

and function calls. By expanding this project, developers can

explore optimization techniques like memoization and

iterative approaches to improve performance.

Chapter 56: Sum of Even

Numbers in a List
Overview A program to calculate the sum of even numbers

in a list is a fundamental exercise in Python that helps

understand loops, conditionals, and list comprehensions.

This chapter covers the step-by-step implementation of

summing even numbers in a list, handling user input, and

using efficient techniques such as list comprehensions.

Key Concepts of Summing Even Numbers in Python

Definition of Even Numbers:

A number is even if it is divisible by 2:

nmod  2=0n \mod 2 = 0 .

Using Loops and Conditional Statements:

Iterating through the list and checking for

even numbers.

Using built-in functions to optimize

performance.

Example Sum of Even Numbers

Input List Even Numbers Sum

[1, 2, 3, 4, 5] [2, 4] 6

[10, 15, 20, 25, 30] [10, 20, 30] 60

[7, 9, 11] [] 0

Basic Rules for Finding the Sum of Even Numbers in

Python

Rule Correct Example

Check if a number is

even
if num % 2 == 0:

Use a loop to iterate

through the list
for num in numbers:

Use list comprehension

for optimization

sum(num for num in numbers

if num % 2 == 0)

Syntax Table

S

L
Concept Syntax/Example

Descriptio

n

1 Get user input

numbers =

list(map(int,

input().split()))

Takes a list

of numbers

as input.

2

Use a loop to

find even

numbers

for num in

numbers:

Iterates

through the

list.

3

Check if a

number is

even

if num % 2 == 0:
Filters even

numbers.

4
Sum even

numbers
even_sum += num

Adds even

numbers to

the sum.

5
Use list

comprehension

sum_even =

sum(num for num

in numbers if num

% 2 == 0)

Optimized

approach.

Real-Life Project: Sum of Even Numbers in a List

Project Code:

1. def sum_even_numbers(numbers):

2. even_sum = 0

3. for num in numbers:

4. if num % 2 == 0:

5. even_sum += num

6. return even_sum

7. numbers = list(map(int, input("Enter numbers separated

by space: ").split()))

8. print("Sum of Even Numbers:",

sum_even_numbers(numbers))

Project Code Explanation Table

Lin

e
Code Section Description

1
def

sum_even_numbers(numbers):

Defines a function

to compute the

sum of even

numbers.

2 even_sum = 0

Initializes a

variable to store

the sum of even

numbers.

3 for num in numbers:

Loops through

each number in

the list.

4 if num % 2 == 0:
Checks if the

number is even.

5 even_sum += num

Adds even

numbers to the

sum.

6 return even_sum
Returns the sum

of even numbers.

7

numbers = list(map(int,

input("Enter numbers separated

by space: ").split()))

Takes user input

as a list of

integers.

8
print("Sum of Even Numbers:",

sum_even_numbers(numbers))

Calls the function

and prints the sum

of even numbers.

Expected Results

The program asks the user to enter a list of

numbers.

It filters out the even numbers and computes their

sum.

It prints the total sum of even numbers from the

list.

If there are no even numbers, it returns 0.

Hands-On Exercise Try improving the Sum of Even

Numbers program with these additional features:

1. Modify the program to sum only odd

numbers.

2. Enhance the program to count how many

even numbers exist in the list.

3. Create a GUI version using Tkinter for user-

friendly input.

4. Allow users to enter numbers from a file

instead of manual input.

5. Optimize performance using built-in

functions like filter() and sum() .

Conclusion This Sum of Even Numbers project introduces

Python concepts such as loops, conditionals, and list

operations. By expanding this project, developers can

explore more advanced list-processing techniques and

optimizations.

Chapter 57: Basic Phonebook

Application
Overview A Basic Phonebook Application allows users to

store, search, update, and delete contact information. This

project helps in understanding data structures such as

dictionaries, user input handling, and file storage in Python.

This chapter covers the step-by-step implementation of a

simple phonebook using Python, handling user input, storing

contact details, and performing CRUD (Create, Read,

Update, Delete) operations.

Key Concepts of Phonebook Application in Python

Using Dictionaries to Store Contacts:

Contacts are stored as key-value pairs

(Name -> Phone Number).

Performing CRUD Operations:

Adding, retrieving, updating, and deleting

contacts.

User Input Handling:

Accepting user choices for different

actions.

Validating and formatting phone

numbers.

Example Phonebook Operations

Operation Input Output

Add Contact "John, 1234567890" Contact Added

Search Contact "John" 1234567890

Update Contact "John, 9876543210" Contact Updated

Delete Contact "John" Contact Deleted

Basic Rules for Phonebook Application in Python

Rule Correct Example

Use dictionaries to store phonebook = {"Alice":

contacts "9876543210"}

Check if a contact exists

before updating/deleting
if name in phonebook:

Handle invalid inputs with

error messages

if not number.isdigit():

print("Invalid number")

Syntax Table

SL
Concep

t
Syntax/Example Description

1

Define

dictiona

ry

phonebook = {}

Creates an

empty

dictionary to

store contacts.

2
Add

contact

phonebook[name] =

number

Stores a

contact in the

dictionary.

3
Search

contact

if name in phonebook:

print(phonebook[nam

e])

Retrieves a

contact by

name.

4
Update

contact

phonebook[name] =

new_number

Updates an

existing

contact.

5
Delete

contact
del phonebook[name]

Removes a

contact from

the dictionary.

Real-Life Project: Basic Phonebook Application

Project Code:

1. phonebook = {}

2. def add_contact(name, number):

3. phonebook[name] = number

4. print(f"Contact {name} added successfully.")

5. def search_contact(name):

6. if name in phonebook:

7. print(f"{name}: {phonebook[name]}")

8. else:

9. print("Contact not found.")

10. def update_contact(name, new_number):

11. if name in phonebook:

12. phonebook[name] = new_number

13. print(f"Contact {name} updated successfully.")

14. else:

15. print("Contact not found.")

16. def delete_contact(name):

17. if name in phonebook:

18. del phonebook[name]

19. print(f"Contact {name} deleted successfully.")

20. else:

21. print("Contact not found.")

22. while True:

23. print("\nPhonebook Menu:")

24. print("1. Add Contact")

25. print("2. Search Contact")

26. print("3. Update Contact")

27. print("4. Delete Contact")

28. print("5. Exit")

29. choice = input("Enter your choice: ")

30. if choice == "1":

31. name = input("Enter name: ")

32. number = input("Enter number: ")

33. add_contact(name, number)

34. elif choice == "2":

35. name = input("Enter name to search: ")

36. search_contact(name)

37. elif choice == "3":

38. name = input("Enter name to update: ")

39. new_number = input("Enter new number: ")

40. update_contact(name, new_number)

41. elif choice == "4":

42. name = input("Enter name to delete: ")

43. delete_contact(name)

44. elif choice == "5":

45. print("Exiting Phonebook.")

46. break

47. else:

48. print("Invalid choice. Please try again.")

Project Code Explanation Table

Lin

e
Code Section Description

1 phonebook = {}

Initializes an empty

dictionary for storing

contacts.

2-4

def

add_contact(name,

number):

Defines a function to add a

contact.

5-9

def

search_contact(name)

:

Defines a function to search

for a contact.

10-

15

def

update_contact(name,

new_number):

Defines a function to update

an existing contact.

16-

21

def

delete_contact(name):

Defines a function to delete a

contact.

22-

28
while True:

Creates a menu loop for user

interaction.

29-

48
Menu Options

Implements choices for

adding, searching, updating,

deleting, and exiting the

program.

Expected Results

The program presents a menu with options for

managing contacts.

The user can add, search, update, and delete

contacts.

If a contact doesn’t exist, an appropriate message

is displayed.

The program continues running until the user

chooses to exit.

Hands-On Exercise Try improving the Basic Phonebook

Application with these additional features:

1. Allow saving and loading contacts from a file

for persistence.

2. Implement input validation for phone

numbers (e.g., ensuring they contain only

digits).

3. Create a GUI version using Tkinter for user-

friendly interaction.

4. Enhance the program to allow searching for

partial names.

5. Allow users to export the phonebook to a

CSV file.

Chapter 58: Check if a String is

a Pangram
Overview A Pangram Checker is a program that determines

whether a given sentence contains all the letters of the

English alphabet at least once. A common example of a

pangram is:

"The quick brown fox jumps over the lazy dog."

This project helps in understanding string manipulation,

sets, loops, and conditionals in Python.

This chapter covers the step-by-step implementation of

checking if a given string is a pangram, handling user input,

and using efficient techniques.

Key Concepts of Pangram Checker in Python

Definition of Pangram:

A sentence that contains every letter of

the alphabet at least once.

Using Sets to Check Uniqueness:

A set stores unique characters, making it

useful for pangram detection.

Efficient Algorithms:

Using set(string.ascii_lowercase) to

compare characters quickly.

Example Pangram Checks

Input String
Pangram

?

"The quick brown fox jumps over the lazy

dog."
Yes

"Hello, World!" No

"Pack my box with five dozen liquor jugs." Yes

Basic Rules for Pangram Checker in Python

Rule Correct Example

Convert string to

lowercase
text.lower()

Remove spaces and

punctuation

text.replace(" ", "").replace(".",

"")

Use sets to track

unique letters
set(text) == set(ascii_lowercase)

Syntax Table

SL
Concep

t
Syntax/Example Description

1

Import

string

module

import string

Provides

ascii_lowercas

e for easy

comparison.

2

Convert

text to

lowercas

e

text.lower()

Ensures

uniform

character

comparison.

3

Remove

non-

alphabet

ic

characte

rs

text =

''.join(filter(str.isalpha,

text))

Removes

spaces and

punctuation.

4

Check

for

pangra

m

set(text) ==

set(string.ascii_lowercas

e)

Compares

character set

with the

alphabet.

Real-Life Project: Pangram Checker

Project Code:

1. import string

2. def is_pangram(text):

3. text = text.lower()

4. text = ''.join(filter(str.isalpha, text))

5. return set(text) == set(string.ascii_lowercase)

6. user_input = input("Enter a sentence: ")

7. if is_pangram(user_input):

8. print("The sentence is a pangram.")

9. else:

10. print("The sentence is NOT a pangram.")

Project Code Explanation Table

Lin

e
Code Section Description

1 import string
Imports string module

for alphabet reference.

2 def is_pangram(text):

Defines a function to

check if a string is a

pangram.

3 text = text.lower()
Converts text to

lowercase for uniformity.

4

text =

''.join(filter(str.isalpha,

text))

Removes spaces and

punctuation.

5
return set(text) ==

set(string.ascii_lowercase)

Checks if the set of

characters in text

matches the alphabet.

6
user_input = input("Enter

a sentence: ")
Takes user input.

7-

10
if is_pangram(user_input):

Calls the function and

prints whether the

sentence is a pangram.

Expected Results

The program asks the user to enter a sentence.

It processes the text and determines if it is a

pangram.

It prints a message stating whether the sentence

contains all letters of the alphabet.

Hands-On Exercise Try improving the Pangram Checker

with these additional features:

1. Allow users to enter multiple sentences to

check.

2. Ignore numbers and special characters while

checking for pangrams.

3. Create a GUI version using Tkinter for user-

friendly input.

4. Enhance the program to highlight missing

letters if not a pangram.

5. Enable checking pangrams in different

languages by modifying the character set.

Conclusion This Pangram Checker project introduces

Python concepts such as string manipulation, sets, and

conditionals. By expanding this project, developers can

explore more advanced text-processing applications.

Chapter 59: Calculate BMI (Body

Mass Index)
Overview A BMI (Body Mass Index) Calculator is a program

that calculates a person’s BMI based on their weight and

height. The BMI is used to categorize individuals into

different health ranges such as underweight, normal weight,

overweight, and obesity.

This chapter covers the step-by-step implementation of BMI

calculation using Python, handling user input, and

categorizing BMI values.

Key Concepts of BMI Calculation in Python

Mathematical Formula for BMI:

BMI = weight (kg) ÷ [height (m) × height (m)]

Health Categories Based on BMI:

BMI < 18.5 → Underweight

18.5 ≤ BMI < 24.9 → Normal weight

25.0 ≤ BMI < 29.9 → Overweight

BMI ≥ 30 → Obesity

Using Conditionals to Classify BMI:

if-elif-else statements to determine BMI

category.

Example BMI Calculations

Weight (kg) Height (m) BMI Category

50 1.65 18.3 Underweight

70 1.75 22.9 Normal weight

85 1.80 26.2 Overweight

100 1.70 34.6 Obesity

Basic Rules for BMI Calculation in Python

Rule Correct Example

Convert height to meters
height = height / 100 if

entered in cm

Apply BMI formula bmi = weight / (height ** 2)

Use conditionals to

classify BMI
if bmi < 18.5:

Syntax Table

SL
Concep

t
Syntax/Example

Descriptio

n

1
Get user

input

weight =

float(input("Enter

weight in kg: "))

Takes

weight

input from

user.

2

Convert

height if

needed

height =

float(input("Enter

height in meters: "))

Ensures

height is in

meters.

3
Calculat

e BMI

bmi = weight / (height

** 2)

Uses

formula to

compute

BMI.

4
Classify

BMI
if bmi < 18.5:

Determines

BMI

category.

5
Print

result

print("Your BMI is:",

bmi)

Displays

calculated

BMI.

Real-Life Project: BMI Calculator

Project Code:

1. def calculate_bmi(weight, height):

2. bmi = weight / (height ** 2)

3. if bmi < 18.5:

4. category = "Underweight"

5. elif 18.5 <= bmi < 24.9:

6. category = "Normal weight"

7. elif 25 <= bmi < 29.9:

8. category = "Overweight"

9. else:

10. category = "Obesity"

11. return bmi, category

12. weight = float(input("Enter weight in kg: "))

13. height = float(input("Enter height in meters: "))

14. bmi, category = calculate_bmi(weight, height)

15. print(f"Your BMI is {bmi:.2f}, Category: {category}")

Project Code Explanation Table

Line Code Section Description

1

def

calculate_bmi(weight,

height):

Defines a function to

compute BMI.

2
bmi = weight / (height

** 2)
Applies the BMI formula.

3-10 Conditional checks
Determines BMI category

based on ranges.

11 return bmi, category
Returns BMI value and

category.

12-13 Get user input
Takes weight and height

input from user.

14 Call function
Computes BMI using user

inputs.

15 Print result
Displays BMI value and

classification.

Expected Results

The program asks the user to enter weight and

height.

It calculates the BMI using the formula.

It classifies the BMI into a health category.

It prints the BMI value and category.

Hands-On Exercise Try improving the BMI Calculator with

these additional features:

1. Allow users to input height in centimeters

and convert it to meters.

2. Enhance the program to accept weight in

pounds and convert to kilograms.

3. Create a GUI version using Tkinter for

interactive input.

4. Provide health advice based on BMI

category.

5. Save BMI history for multiple entries and

display previous calculations.

Conclusion This BMI Calculator project introduces Python

concepts such as mathematical operations, conditionals,

and user input handling. By expanding this project,

developers can create more advanced health and fitness

tracking applications.

Chapter 60: Count the Number

of Digits in a Number
Overview A program to count the number of digits in a

number helps in understanding loops, mathematical

operations, and string manipulations in Python. This project

can be useful in various number-processing applications

such as validating user input, formatting numerical data,

and working with large integers.

This chapter covers the step-by-step implementation of

counting digits in a number, handling user input, and using

different approaches to achieve the solution.

Key Concepts of Counting Digits in Python

Mathematical Approach:

Use a loop to divide the number by 10

repeatedly until it reaches 0.

String Conversion Approach:

Convert the number to a string and count

the characters.

Using Logarithm:

Apply logarithm base 10 to determine

the number of digits.

Example Digit Count Calculations

Input Number Number of Digits

12345 5

987654321 9

1000 4

7 1

Basic Rules for Counting Digits in Python

Rule Correct Example

Convert number to string

and use len()
len(str(num))

Use a loop to divide the

number
while num > 0: num //= 10

Use logarithm for efficiency
math.floor(math.log10(num))

+ 1

Syntax Table

SL Concept Syntax/Example
Descripti

on

1
Get user

input

num = int(input("Enter a

number: "))

Takes user

input as an

integer.

2

Convert

number

to string

len(str(num))

Counts

digits

using

string

conversion

.

3

Loop to

count

digits

while num > 0: count +=

1; num //= 10

Uses a

loop to

repeatedly

divide by

10.

4
Logarithm

ic method

math.floor(math.log10(nu

m)) + 1

Computes

digits

efficiently

using

logarithm.

5
Print

result

print("Number of digits:",

count)

Displays

the

number of

digits.

Real-Life Project: Count the Number of Digits in a

Number

Project Code:

1. import math

2. def count_digits_math(num):

3. return len(str(num))

4. def count_digits_loop(num):

5. count = 0

6. while num > 0:

7. count += 1

8. num //= 10

9. return count

10. def count_digits_log(num):

11. if num == 0:

12. return 1

13. return math.floor(math.log10(num)) + 1

14. num = int(input("Enter a number: "))

15. print("Using string conversion:",

count_digits_math(num))

16. print("Using loop method:", count_digits_loop(num))

17. print("Using logarithm method:", count_digits_log(num))

Project Code Explanation Table

Lin

e
Code Section Description

1 import math

Imports the math

module for logarithm

calculations.

2-3 def count_digits_math(num):
Uses string conversion

to count digits.

4-9 def count_digits_loop(num):

Uses a loop to count

digits by dividing the

number.

10-

13
def count_digits_log(num):

Uses logarithm to

compute the number

of digits.

14
num = int(input("Enter a

number: "))

Takes user input as an

integer.

15

print("Using string

conversion:",

count_digits_math(num))

Displays digit count

using string method.

16 print("Using loop method:", Displays digit count

count_digits_loop(num)) using loop method.

17

print("Using logarithm

method:",

count_digits_log(num))

Displays digit count

using logarithmic

method.

Expected Results

The program asks the user to enter a number.

It calculates and prints the number of digits using

different methods.

If the user enters 0 , it correctly returns 1 digit.

Hands-On Exercise Try improving the Digit Counter with

these additional features:

1. Modify the program to count digits in

negative numbers.

2. Allow users to count digits in decimal

numbers by ignoring the decimal point.

3. Create a GUI version using Tkinter for

interactive input.

4. Allow users to count digits in a list of

numbers instead of just one.

5. Implement performance comparisons

between methods for large numbers.

Conclusion This Digit Counter project introduces Python

concepts such as loops, conditionals, mathematical

operations, and string manipulations. By expanding this

project, developers can explore more efficient ways to

process numbers in real-world applications.

Chapter 61: Sum of All Elements

in a List
Overview A program to calculate the sum of all elements in

a list is a fundamental exercise in Python that helps

understand loops, list operations, and built-in functions.

Summing elements in a list is commonly used in data

analysis, statistics, and financial applications.

This chapter covers the step-by-step implementation of

summing elements in a list, handling user input, and using

different approaches for efficiency.

Key Concepts of Summing Elements in a List Using

Python

Using Loops to Sum Elements:

Iterating through the list and adding each

element to a total sum.

Using Built-in Functions:

Using Python’s sum() function for direct

summation.

List Comprehensions for Optimization:

Utilizing list comprehensions to filter and

sum specific values.

Example List Summation

Input List Sum of Elements

[1, 2, 3, 4, 5] 15

[10, 20, 30, 40] 100

[-5, 10, -15, 20] 10

Basic Rules for Summing Elements in a List Using

Python

Rule Correct Example

Use a loop to iterate through

the list

for num in numbers: total

+= num

Use Python’s built-in sum()

function
total = sum(numbers)

Handle empty lists correctly if not numbers: return 0

Syntax Table

SL Concept Syntax/Example Description

1
Get user

input

numbers =

list(map(int,

input().split()))

Takes a list of

numbers as

input.

2

Use a

loop to

sum

elements

for num in

numbers: total

+= num

Iterates through

the list and sums

elements.

3

Use the

sum()

function

total =

sum(numbers)

Efficiently sums

all elements.

4

Handle

empty

lists

if len(numbers)

== 0: return 0

Returns 0 for an

empty list.

5
Print the

result

print("Sum:",

total)

Displays the

total sum.

Real-Life Project: Sum of All Elements in a List

Project Code:

1. def sum_elements_loop(numbers):

2. total = 0

3. for num in numbers:

4. total += num

5. return total

6. def sum_elements_builtin(numbers):

7. return sum(numbers)

8. numbers = list(map(int, input("Enter numbers separated

by space: ").split()))

9. print("Using loop method:",

sum_elements_loop(numbers))

10. print("Using built-in function:",

sum_elements_builtin(numbers))

Project Code Explanation Table

Lin

e
Code Section Description

1-5
def

sum_elements_loop(numbers):

Uses a loop to

sum elements in a

list.

6-7
def

sum_elements_builtin(numbers):

Uses Python’s

built-in sum()

function to

compute the sum.

8
numbers = list(map(int,

input().split()))

Takes user input

and converts it

into a list of

integers.

9
print("Using loop method:",

sum_elements_loop(numbers))

Displays the sum

using a loop.

10
print("Using built-in function:",

sum_elements_builtin(numbers))

Displays the sum

using the sum()

function.

Expected Results

The program asks the user to enter a list of

numbers.

It calculates and prints the sum of all numbers

using both a loop and the built-in sum() function.

If the user enters an empty list, it returns 0.

Hands-On Exercise Try improving the Sum of All Elements

in a List program with these additional features:

1. Modify the program to calculate the sum of

only even or odd numbers.

2. Allow users to enter numbers from a file

instead of manual input.

3. Create a GUI version using Tkinter for

interactive input.

4. Handle floating-point numbers instead of

just integers.

Conclusion This Sum of All Elements in a List project

introduces Python concepts such as loops, conditionals, and

list operations. By expanding this project, developers can

explore more advanced list-processing techniques and

optimizations.

Chapter 62: Print Prime

Numbers from 1 to N
Overview A program to print all prime numbers from 1 to N

is a fundamental exercise in Python that helps in

understanding loops, conditional statements, and number

theory. A prime number is a natural number greater than 1

that has only two divisors: 1 and itself.

This chapter covers the step-by-step implementation of

finding prime numbers within a given range, handling user

input, and optimizing performance.

Key Concepts of Printing Prime Numbers Using

Python

Definition of Prime Numbers:

A number is prime if it is only divisible by

1 and itself.

Using Loops and Conditional Statements:

Iterating through numbers and checking

divisibility.

Optimization Techniques:

Checking divisibility up to the square root

of the number.

Skipping even numbers after 2 to reduce

iterations.

Example Prime Number Calculations

Input N Prime Numbers

10 2, 3, 5, 7

20 2, 3, 5, 7, 11, 13, 17, 19

30 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Basic Rules for Finding Prime Numbers in Python

Rule Correct Example

A number is prime if it is not divisible if num % i == 0:

by any number from 2 to √N

The number 2 is the only even prime

number

if num == 2: return

True

Skip checking even numbers after 2

to improve efficiency

for i in range(3,

sqrt(n) + 1, 2):

Syntax Table

SL Concept Syntax/Example Description

1
Get user

input

N = int(input("Enter

a number: "))

Takes an

integer input

from the user.

2

Loop

through

numbers

for num in range(2,

N + 1):

Iterates

through

numbers up to

N .

3

Check if a

number is

prime

if num % i == 0:

Determines if a

number is

divisible by

another.

4

Use

square

root

optimizati

on

for i in range(2,

int(math.sqrt(num))

+ 1):

Improves

efficiency by

reducing

iterations.

5

Print

prime

numbers

print(prime_number

s)

Displays the

list of prime

numbers.

Real-Life Project: Print Prime Numbers from 1 to N

Project Code:

1. import math

2. def is_prime(num):

3. if num < 2:

4. return False

5. for i in range(2, int(math.sqrt(num)) + 1):

6. if num % i == 0:

7. return False

8. return True

9. def prime_numbers_upto_n(N):

10. primes = [num for num in range(2, N + 1) if

is_prime(num)]

11. return primes

12. N = int(input("Enter the value of N: "))

13. print("Prime numbers up to", N, ":",

prime_numbers_upto_n(N))

Project Code Explanation Table

Lin

e
Code Section Description

1 import math

Imports the math

module for square

root calculation.

2-8 def is_prime(num):

Defines a function to

check if a number is

prime.

3-4 if num < 2: return False
Returns False for

numbers less than 2.

5-7
for i in range(2,

int(math.sqrt(num)) + 1):

Checks divisibility up

to the square root of

the number.

8 return True
Returns True if no

divisor is found.

9-

11

def

prime_numbers_upto_n(N):

Defines a function to

generate prime

numbers up to N .

10

primes = [num for num in

range(2, N + 1) if

is_prime(num)]

Uses list

comprehension to

filter prime numbers.

12
N = int(input("Enter the value

of N: "))

Takes user input for

the range limit.

13

print("Prime numbers up to",

N, ":",

prime_numbers_upto_n(N))

Prints the list of

prime numbers.

Expected Results

The program asks the user to enter an integer

value for N .

It calculates and prints all prime numbers from 1

to N .

The program efficiently finds primes using square

root optimization.

Hands-On Exercise Try improving the Prime Number

Finder with these additional features:

1. Modify the program to find the first N prime

numbers instead of a range.

2. Implement an optimized version using the

Sieve of Eratosthenes algorithm.

3. Create a GUI version using Tkinter for

interactive input.

4. Allow users to check if a single number is

prime.

Chapter 63: Convert Kilometers

to Miles
Overview A Kilometers to Miles Converter is a simple

program that converts a distance given in kilometers to

miles. This project helps in understanding mathematical

calculations, user input handling, and formatting output in

Python.

This chapter covers the step-by-step implementation of

converting kilometers to miles, handling user input, and

using different methods for accurate results.

Key Concepts of Converting Kilometers to Miles in

Python

Mathematical Formula for Conversion:

Miles = Kilometers × 0.621371

User Input Handling:

Accepting the distance in kilometers from

the user.

Converting the input to a float for precise

calculations.

Formatting Output:

Rounding off the result for better

readability.

Example Kilometers to Miles Conversion

Kilometers Miles

1 0.62

5 3.11

10 6.21

42.195 26.22 (Marathon distance)

Basic Rules for Conversion in Python

Rule Correct Example

Multiply kilometers by miles = km * 0.621371

0.621371

Use float for precise

input handling

km = float(input("Enter

kilometers: "))

Format the output for

readability
print(f"{miles:.2f}")

Syntax Table

SL
Concep

t

Syntax/Examp

le
Description

1
Get user

input

km =

float(input("Ent

er kilometers:

"))

Takes distance input

from user.

2

Convert

kilomete

rs to

miles

miles = km *

0.621371

Applies the

conversion formula.

3
Print the

result

print(f"Miles:

{miles:.2f}")

Displays the

converted value

with two decimal

places.

Real-Life Project: Convert Kilometers to Miles

Project Code:

1. def km_to_miles(km):

2. return km * 0.621371

3. km = float(input("Enter distance in kilometers: "))

4. miles = km_to_miles(km)

5. print(f"{km} kilometers is equal to {miles:.2f} miles.")

Project Code Explanation Table

Lin

e
Code Section Description

1-2 def km_to_miles(km):

Defines a function to

convert kilometers to

miles.

3
km = float(input("Enter

distance in kilometers: "))

Takes user input and

converts it to float.

4 miles = km_to_miles(km)

Calls the function to

perform the

conversion.

5 print(f"{km} kilometers is Prints the result with

equal to {miles:.2f} miles.") formatted output.

Expected Results

The program asks the user to enter a distance in

kilometers.

It calculates and prints the equivalent distance in

miles.

The output is formatted to two decimal places for

readability.

Hands-On Exercise Try improving the Kilometers to Miles

Converter with these additional features:

1. Allow users to convert miles to kilometers as

well.

2. Create a GUI version using Tkinter for

interactive input.

3. Handle invalid inputs gracefully using

exception handling.

4. Allow users to input multiple values at once

and display all conversions.

5. Save conversion history to a file for later

reference.

Conclusion This Kilometers to Miles Converter project

introduces Python concepts such as mathematical

calculations, user input handling, and output formatting. By

expanding this project, developers can create more

advanced unit conversion tools for various applications.

Chapter 64: Generate

Multiplication Table of a Given

Number

Overview A program to generate a multiplication table of a

given number helps in understanding loops, mathematical

operations, and formatted output in Python. Multiplication

tables are widely used in mathematics and education for

quick calculations.

This chapter covers the step-by-step implementation of

generating a multiplication table, handling user input, and

formatting output for readability.

Key Concepts of Multiplication Table Generation in

Python

Using Loops to Generate Table:

Iterating through a range to multiply the

given number.

Formatted Output:

Aligning the output neatly using f-strings

or format() .

Customizable Range:

Allowing users to define the range of the

table.

Example Multiplication Table

Number Multiplier Result

5 1 5

5 2 10

5 3 15

5

5 10 50

Basic Rules for Generating Multiplication Table in

Python

Rule Correct Example

Use a loop to iterate through

multipliers
for i in range(1, 11):

Multiply the given number by

the iterator
result = num * i

Print output in formatted style
print(f"{num} x {i} =

{result}")

Syntax Table

SL Concept
Syntax/Examp

le
Description

1
Get user

input

num =

int(input("Enter

a number: "))

Takes the base

number for

multiplication.

2

Loop

through

multipliers

for i in range(1,

11):

Iterates from 1

to 10.

3

Perform

multiplicati

on

result = num * i

Computes the

multiplication

result.

4

Print

formatted

output

print(f"{num} x

{i} = {result}")

Displays the

result clearly.

Real-Life Project: Multiplication Table Generator

Project Code:

1. def multiplication_table(num, limit=10):

2. for i in range(1, limit + 1):

3. print(f"{num} x {i} = {num * i}")

4. num = int(input("Enter a number: "))

5. limit = int(input("Enter the range of the table: "))

6. multiplication_table(num, limit)

Project Code Explanation Table

Lin

e
Code Section Description

1

def

multiplication_table(num,

limit=10):

Defines a function to

generate a

multiplication table.

2-3 for i in range(1, limit + 1):

Loops through the

defined range and

prints the result.

4
num = int(input("Enter a

number: "))

Takes user input for the

base number.

5
limit = int(input("Enter the

range of the table: "))

Allows the user to set a

custom range.

6
multiplication_table(num,

limit)

Calls the function to

print the multiplication

table.

Expected Results

The program asks the user to enter a number and

a range.

It prints the multiplication table up to the specified

range.

The output is formatted neatly for readability.

Hands-On Exercise Try improving the Multiplication Table

Generator with these additional features:

1. Allow users to generate tables for multiple

numbers in one run.

2. Create a GUI version using Tkinter for

interactive input.

3. Save the generated table to a file for later

reference.

4. Enhance the program to format output in a

table-like structure.

5. Implement a feature to generate tables in

reverse order.

Conclusion This Multiplication Table Generator project

introduces Python concepts such as loops, mathematical

operations, and formatted output. By expanding this project,

developers can create more interactive and user-friendly

learning tools for educational purposes.

Chapter 65: Count Consonants

in a String
Overview A program to count the number of consonants in

a string is a fundamental exercise in Python that helps in

understanding string manipulation, loops, conditionals, and

character filtering. This project is useful in text analysis and

natural language processing (NLP) applications.

This chapter covers the step-by-step implementation of

counting consonants in a given string, handling user input,

and using different approaches for efficiency.

Key Concepts of Counting Consonants in Python

Definition of Consonants:

A consonant is any letter in the English

alphabet that is not a vowel (a, e, i, o, u).

Using Loops and Conditionals:

Iterating through each character and

checking if it is a consonant.

Using String Methods:

Using built-in functions like isalpha() to

filter alphabetic characters.

Example Consonant Count Calculations

Input String Consonant Count

"Python Programming" 11

"Hello, World!" 7

"Data Science" 7

Basic Rules for Counting Consonants in Python

Rule Correct Example

Convert string to lowercase text.lower()

Check if a character is

alphabetic
char.isalpha()

Exclude vowels from the count if char not in "aeiou":

Syntax Table

SL Concept
Syntax/Exampl

e
Description

1
Get user

input

text =

input("Enter a

string: ")

Takes string input

from user.

2

Convert

text to

lowercase

text.lower()

Ensures uniform

character

comparison.

3

Iterate

through

characters

for char in text:

Loops through

each character in

the string.

4

Check if

character

is a

consonant

if char.isalpha()

and char not in

"aeiou":

Filters out vowels

and non-

alphabetic

characters.

5

Count

consonant

s

consonant_coun

t += 1

Increments count

when a

consonant is

found.

Real-Life Project: Count Consonants in a String

Project Code:

1. def count_consonants(text):

2. consonants = "bcdfghjklmnpqrstvwxyz"

3. count = 0

4. text = text.lower()

5. for char in text:

6. if char in consonants:

7. count += 1

8. return count

9. text = input("Enter a string: ")

10. print("Number of consonants:", count_consonants(text))

Project Code Explanation Table

Lin

e
Code Section Description

1
def

count_consonants(text):

Defines a function to

count consonants.

2
consonants =

"bcdfghjklmnpqrstvwxyz"

Defines a string of

consonants for

comparison.

3 count = 0
Initializes the counter

for consonants.

4 text = text.lower()

Converts text to

lowercase for uniform

comparison.

5-7 for char in text:

Iterates through each

character and checks if

it is a consonant.

8 return count
Returns the total

number of consonants.

9
text = input("Enter a

string: ")
Takes user input.

10

print("Number of

consonants:",

count_consonants(text))

Calls the function and

prints the result.

Expected Results

The program asks the user to enter a string.

It processes the string and counts the number of

consonants.

It prints the total count of consonants found in the

string.

Hands-On Exercise Try improving the Consonant Counter

with these additional features:

1. Allow the program to count vowels and

consonants separately.

2. Create a GUI version using Tkinter for

interactive input.

3. Modify the program to ignore special

characters and numbers.

4. Enable case-insensitive consonant counting.

5. Allow batch processing of multiple strings at

once.

Chapter 66: Check if a Word is a

Palindrome
Overview A Palindrome Checker is a program that

determines whether a given word reads the same forward

and backward. Palindromes are widely used in linguistics,

mathematics, and computer science applications such as

DNA sequencing and data structures.

This chapter covers the step-by-step implementation of

checking if a word is a palindrome, handling user input, and

using different approaches for efficiency.

Key Concepts of Palindrome Checking in Python

Definition of a Palindrome:

A word is a palindrome if it remains the

same when reversed (e.g., "madam",

"racecar").

Using String Slicing:

Reversing a string using [::-1] .

Using Loops and Conditionals:

Iterating through characters to compare

them.

Example Palindrome Checks

Input Word Palindrome?

"radar" Yes

"hello" No

"racecar" Yes

"Python" No

Basic Rules for Palindrome Checking in Python

Rule Correct Example

Convert the word to lowercase word.lower()

Reverse the word using slicing word[::-1]

Compare original and reversed if word == word[::-1]:

word

Syntax Table

SL Concept
Syntax/Examp

le
Description

1 Get user input

word =

input("Enter a

word: ")

Takes user

input as a

string.

2
Convert to

lowercase
word.lower()

Ensures case

insensitivity.

3
Reverse the

string
word[::-1]

Reverses the

input string.

4

Compare

original and

reversed word

if word ==

word[::-1]:

Checks if the

word is a

palindrome.

5 Print result
print("It is a

palindrome.")

Displays the

output.

Real-Life Project: Palindrome Checker

Project Code:

1. def is_palindrome(word):

2. word = word.lower()

3. return word == word[::-1]

4. word = input("Enter a word: ")

5. if is_palindrome(word):

6. print(f"'{word}' is a palindrome.")

7. else:

8. print(f"'{word}' is NOT a palindrome.")

Project Code Explanation Table

Lin

e
Code Section Description

1
def

is_palindrome(word):

Defines a function to check if

a word is a palindrome.

2 word = word.lower()

Converts the word to

lowercase for case

insensitivity.

3
return word ==

word[::-1]

Compares the original and

reversed word.

4
word = input("Enter

a word: ")
Takes user input.

5-8
if

is_palindrome(word):

Calls the function and prints

whether the word is a

palindrome.

Expected Results

The program asks the user to enter a word.

It processes the word and checks if it is a

palindrome.

It prints a message indicating whether the word is

a palindrome.

Hands-On Exercise Try improving the Palindrome Checker

with these additional features:

1. Allow users to check full sentences for

palindromes (ignoring spaces and

punctuation).

2. Create a GUI version using Tkinter for

interactive input.

3. Modify the program to check if a number is a

palindrome.

4. Enable case-insensitive and whitespace-

agnostic palindrome checking.

5. Allow batch processing of multiple words at

once.

Conclusion This Palindrome Checker project introduces

Python concepts such as string manipulation, slicing, and

conditionals. By expanding this project, developers can

explore more advanced text-processing applications in

language processing and data validation.

Chapter 67: Convert Time to

Seconds
Overview A Time to Seconds Converter is a simple program

that converts a given time (hours, minutes, and seconds)

into total seconds. This project helps in understanding

mathematical calculations, user input handling, and time-

related operations in Python.

This chapter covers the step-by-step implementation of

converting time to seconds, handling user input, and

formatting output for better readability.

Key Concepts of Time Conversion in Python

Mathematical Formula for Conversion:

TotalSeconds=(Hours×3600)+

(Minutes×60)+Seconds

User Input Handling:

Accepting time in hours, minutes, and

seconds from the user.

Converting inputs to integers for

calculations.

Formatting Output:

Displaying the total seconds in a user-

friendly manner.

Example Time Conversions

Hours Minutes Seconds Total Seconds

1 0 0 3600

0 30 0 1800

2 15 10 8110

0 0 45 45

Basic Rules for Time Conversion in Python

Rule Correct Example

Multiply hours seconds = hours * 3600

by 3600

Multiply

minutes by 60
seconds += minutes * 60

Sum up all

seconds

total_seconds = hours * 3600 + minutes *

60 + seconds

Syntax Table

SL Concept Syntax/Example
Descripti

on

1
Get user

input

hours = int(input("Enter

hours: "))

Takes input

for hours.

2

Convert

minutes

to

seconds

seconds = minutes * 60

Converts

minutes

into

seconds.

3

Convert

hours to

seconds

seconds = hours * 3600

Converts

hours into

seconds.

4
Sum all

values

total_seconds = hours *

3600 + minutes * 60 +

seconds

Computes

the final

total.

5

Print

formatte

d output

print("Total seconds:",

total_seconds)

Displays

the result.

Real-Life Project: Convert Time to Seconds

Project Code:

1. def time_to_seconds(hours, minutes, seconds):

2. total_seconds = (hours * 3600) + (minutes * 60) +

seconds

3. return total_seconds

4. hours = int(input("Enter hours: "))

5. minutes = int(input("Enter minutes: "))

6. seconds = int(input("Enter seconds: "))

7. total = time_to_seconds(hours, minutes, seconds)

8. print(f"Total time in seconds: {total}")

Project Code Explanation Table

Lin

e
Code Section Description

1-3 def time_to_seconds(hours,

minutes, seconds):

Defines a function to

convert time to

seconds.

2

total_seconds = (hours *

3600) + (minutes * 60) +

seconds

Computes the total

seconds.

4-6
hours = int(input("Enter

hours: "))

Takes user input for

hours, minutes, and

seconds.

7

total =

time_to_seconds(hours,

minutes, seconds)

Calls the function to

perform the

conversion.

8
print(f"Total time in seconds:

{total}")

Prints the total

seconds in a

formatted output.

Expected Results

The program asks the user to enter time in hours,

minutes, and seconds.

It calculates and prints the equivalent time in total

seconds.

The output is formatted for readability.

Hands-On Exercise Try improving the Time to Seconds

Converter with these additional features:

1. Allow users to input time in different

formats (e.g., HH:MM:SS).

2. Create a GUI version using Tkinter for

interactive input.

3. Handle invalid inputs gracefully using

exception handling.

4. Allow users to convert seconds back into

hours, minutes, and seconds.

5. Save conversion history to a file for later

reference.

Conclusion This Time to Seconds Converter project

introduces Python concepts such as mathematical

operations, user input handling, and formatted output. By

expanding this project, developers can create more

advanced time conversion tools for various applications.

Chapter 68: Remove Duplicate

Elements from a List
Overview A program to remove duplicate elements from a

list is a fundamental exercise in Python that helps in

understanding data structures, loops, and built-in functions.

Removing duplicates is useful in data processing, filtering

unique records, and improving efficiency in various

applications.

This chapter covers the step-by-step implementation of

removing duplicate elements from a list, handling user

input, and using different approaches for efficiency.

Key Concepts of Removing Duplicates in Python

Using Sets to Remove Duplicates:

A set automatically removes duplicate

elements.

Using Loops and Conditionals:

Iterating through the list and adding

unique elements to a new list.

Using List Comprehension for Optimization:

Using dict.fromkeys() to preserve order

and remove duplicates.

Example Duplicate Removal

Input List Unique Elements

[1, 2, 2, 3, 4, 4, 5] [1, 2, 3, 4, 5]

[10, 20, 30, 10, 40, 50, 20] [10, 20, 30, 40, 50]

["apple", "banana", "apple",

"orange"]

["apple", "banana",

"orange"]

Basic Rules for Removing Duplicates in Python

Rule Correct Example

Use sets to remove

duplicates
unique_list = list(set(numbers))

Use loops to filter

unique elements

if num not in unique_list:

unique_list.append(num)

Use dict.fromkeys()

to preserve order

unique_list =

list(dict.fromkeys(numbers))

Syntax Table

S

L
Concept Syntax/Example

Descripti

on

1
Get user

input

numbers = list(map(int,

input().split()))

Takes a list

of

numbers

as input.

2

Use a set to

remove

duplicates

unique_list =

list(set(numbers))

Removes

duplicates

but does

not

preserve

order.

3

Use a loop to

filter unique

elements

for num in numbers: if

num not in unique_list:

unique_list.append(num)

Removes

duplicates

while

preserving

order.

4

Use

dict.fromkeys

() for ordered

removal

unique_list =

list(dict.fromkeys(number

s))

Preserves

order while

removing

duplicates.

5
Print the

result

print("Unique list:",

unique_list)

Displays

the list

without

duplicates.

Real-Life Project: Remove Duplicate Elements from a

List

Project Code:

1. def remove_duplicates_set(numbers):

2. return list(set(numbers))

3. def remove_duplicates_loop(numbers):

4. unique_list = []

5. for num in numbers:

6. if num not in unique_list:

7. unique_list.append(num)

8. return unique_list

9. def remove_duplicates_dict(numbers):

10. return list(dict.fromkeys(numbers))

11. numbers = list(map(int, input("Enter numbers separated

by space: ").split()))

12. print("Using set method:",

remove_duplicates_set(numbers))

13. print("Using loop method:",

remove_duplicates_loop(numbers))

14. print("Using dictionary method:",

remove_duplicates_dict(numbers))

Project Code Explanation Table

Lin

e
Code Section Description

1-2
def

remove_duplicates_set(numbers):

Uses a set to

remove

duplicates

quickly.

3-8
def

remove_duplicates_loop(numbers):

Uses a loop to

filter unique

elements

manually.

9-

10

def

remove_duplicates_dict(numbers):

Uses

dict.fromkeys()

to remove

duplicates while

preserving

order.

11
numbers = list(map(int,

input().split()))

Takes user input

as a list of

integers.

12 print("Using set method:", Displays unique

remove_duplicates_set(numbers)) elements using

the set method.

13
print("Using loop method:",

remove_duplicates_loop(numbers))

Displays unique

elements using

the loop

method.

14
print("Using dictionary method:",

remove_duplicates_dict(numbers))

Displays unique

elements using

the dictionary

method.

Expected Results

The program asks the user to enter a list of

numbers.

It removes duplicates using three different

methods.

It prints the unique elements in each method’s

output.

Hands-On Exercise Try improving the Duplicate Removal

program with these additional features:

1. Modify the program to remove duplicates

from a list of words instead of numbers.

2. Create a GUI version using Tkinter for

interactive input.

3. Allow users to choose which method they

want to use for removing duplicates.

4. Enhance the program to handle mixed data

types in the list.

5. Save the unique list to a file for later

reference.

Conclusion This Remove Duplicates project introduces

Python concepts such as sets, loops, and dictionary

operations. By expanding this project, developers can

explore more advanced data processing techniques and

optimizations.

Chapter 69: Find the Largest

Element in a List
Overview A program to find the largest element in a list is

a fundamental exercise in Python that helps in

understanding loops, conditional statements, and built-in

functions. This operation is widely used in data analysis,

sorting, and performance optimization tasks.

This chapter covers the step-by-step implementation of

finding the largest element in a list, handling user input, and

using different approaches for efficiency.

Key Concepts of Finding the Largest Element in

Python

Using Loops to Find the Maximum:

Iterating through the list and keeping

track of the largest element.

Using Built-in Functions:

Utilizing Python’s max() function for

direct computation.

Handling Edge Cases:

Handling empty lists and lists with

negative numbers.

Example Largest Element Searches

Input List Largest Element

[1, 5, 3, 9, 2] 9

[10, 20, 30, 40, 50] 50

[-5, -2, -9, -1, -7] -1

Basic Rules for Finding the Largest Element in Python

Rule Correct Example

Use max() function for

quick computation
largest = max(numbers)

Use a loop to find the if num > largest: largest =

maximum manually num

Handle empty lists

gracefully

if not numbers: print("List is

empty")

Syntax Table

SL Concept Syntax/Example Description

1
Get user

input

numbers =

list(map(int,

input().split()))

Takes a list of

numbers as

input.

2

Use

max()

function

largest =

max(numbers)

Finds the

largest

element

quickly.

3

Loop

through

list to find

maximum

for num in

numbers: if num >

largest: largest =

num

Finds the

maximum

manually.

4
Handle

empty list

if len(numbers) ==

0: print("List is

empty")

Handles cases

where the list

has no

elements.

5
Print the

result

print("Largest

element:", largest)

Displays the

largest

element.

Real-Life Project: Find the Largest Element in a List

Project Code:

1. def find_largest_loop(numbers):

2. if not numbers:

3. return "List is empty"

4. largest = numbers[0]

5. for num in numbers:

6. if num > largest:

7. largest = num

8. return largest

9. def find_largest_builtin(numbers):

10. return max(numbers) if numbers else "List is empty"

11. numbers = list(map(int, input("Enter numbers separated

by space: ").split()))

12. print("Using loop method:", find_largest_loop(numbers))

13. print("Using built-in function:",

find_largest_builtin(numbers))

Project Code Explanation Table

Lin

e
Code Section Description

1-8
def

find_largest_loop(numbers):

Uses a loop to find

the largest element

manually.

2-3 if not numbers:
Checks if the list is

empty.

4 largest = numbers[0]

Initializes the first

element as the

largest.

5-7 for num in numbers:

Iterates through the

list to find the

maximum.

9-

10

def

find_largest_builtin(numbers):

Uses the max()

function to find the

largest element.

11
numbers = list(map(int,

input().split()))

Takes user input as

a list of integers.

12
print("Using loop method:",

find_largest_loop(numbers))

Displays the largest

element using the

loop method.

13
print("Using built-in function:",

find_largest_builtin(numbers))

Displays the largest

element using the

built-in function.

Expected Results

The program asks the user to enter a list of

numbers.

It calculates and prints the largest number using

both the loop and built-in method.

It handles cases where the list is empty by

displaying an appropriate message.

Hands-On Exercise Try improving the Find Largest Element

program with these additional features:

1. Modify the program to find the smallest

element in the list.

2. Create a GUI version using Tkinter for

interactive input.

3. Handle mixed data types (integers and

floats) in the list.

4. Allow users to find the largest number in

multiple lists at once.

Chapter 70: Check if a String is

a Number
Overview A program to check if a given string is a number

is a useful exercise in Python that helps in understanding

string manipulations, type conversions, and exception

handling. This operation is often used in form validation,

user input handling, and data processing applications.

This chapter covers the step-by-step implementation of

checking if a string is a number, handling different numeric

formats, and using different methods for efficiency.

Key Concepts of Checking if a String is a Number in

Python

Using isdigit() for Integer Check:

The isdigit() method returns True if all

characters in the string are digits.

Using float() for Numeric Check:

Converting a string to float helps

identify decimal numbers.

Handling Negative Numbers and Decimal

Points:

Checking if a string contains - or .

appropriately.

Example String Number Checks

Input String Is Number?

"123" Yes

"45.67" Yes

"-98.5" Yes

"Hello123" No

"12a34" No

Basic Rules for Checking if a String is a Number in

Python

Rule Correct Example

Use isdigit() for integers

only
if text.isdigit():

Use float() with try-

except to check

numbers

try: float(text)

Handle negative and

decimal values

if text.replace('.', '').replace('-',

'').isdigit():

Syntax Table

SL Concept
Syntax/Exampl

e
Description

1
Get user

input

text =

input("Enter a

string: ")

Takes a string

input.

2
Check for

integers
text.isdigit()

Returns True if

all characters are

digits.

3

Use

float()

conversio

n

float(text)
Converts text to

float if possible.

4

Handle

exceptio

ns

try: float(text)

except

ValueError:

Catches errors for

non-numeric

values.

5
Print the

result

print("It is a

number.")

Displays the

result.

Real-Life Project: Check if a String is a Number

Project Code:

1. def is_number(text):

2. try:

3. float(text)

4. return True

5. except ValueError:

6. return False

7. text = input("Enter a string: ")

8. if is_number(text):

9. print(f"'{text}' is a number.")

10. else:

11. print(f"'{text}' is NOT a number.")

Project Code Explanation Table

Line Code Section Description

1
def

is_number(text):

Defines a function to check if a

string is a number.

2-4 try: float(text)
Tries to convert the string to a

float.

5-6
except

ValueError:

Returns False if the conversion

fails.

7

text =

input("Enter a

string: ")

Takes user input.

8-11
if

is_number(text):

Calls the function and prints

whether the string is a number.

Expected Results

The program asks the user to enter a string.

It processes the string and checks if it represents

a valid number.

It prints whether the input is a number or not.

Hands-On Exercise Try improving the String Number

Checker with these additional features:

1. Allow checking for hexadecimal numbers

(e.g., 0x1A3F).

2. Create a GUI version using Tkinter for

interactive input.

3. Modify the program to check if the number

is an integer or a float.

4. Enhance the program to handle scientific

notation (e.g., 1.23e4).

5. Allow batch processing of multiple strings at

once.

Conclusion This String Number Checker project introduces

Python concepts such as string manipulation, type

conversion, and exception handling. By expanding this

project, developers can explore more advanced text

validation and numeric processing applications.

Chapter 71: Python Quiz Game

Overview A Python Quiz Game is an interactive application

where users answer multiple-choice or true/false questions.

This project helps in understanding lists, dictionaries, loops,

conditionals, and user input handling in Python.

This chapter covers the step-by-step implementation of a

quiz game, storing questions and answers, scoring, and

enhancing user interaction.

Key Concepts of Python Quiz Game in Python

Using Dictionaries to Store Questions and

Answers:

A dictionary can be used to store

questions as keys and correct answers as

values.

Using Loops for Repeated Questions:

Iterating through questions to present

them to the user.

Scoring System:

Keeping track of correct and incorrect

answers to calculate a final score.

Example Quiz Structure

Question Options

Correc

t

Answe

r

What is the output of print(2

* 3) ?

a) 6, b) 8, c) 5, d)

3
a

What data type is True in

Python?

a) int, b) bool, c)

string, d) float
b

Which keyword is used to

define a function in Python?

a) define, b) def,

c) func, d)

function

b

Basic Rules for Python Quiz Game in Python

Rule Correct Example

Use dictionaries to store

questions and answers

quiz = {"Question":

"Answer"}

Use a loop to iterate through

questions
for question in quiz:

Compare user input with the

correct answer

if user_answer ==

correct_answer:

Keep track of the score score += 1

Syntax Table

SL Concept
Syntax/Examp

le
Description

1

Define a

dictionary for

questions

quiz = {"What

is 2+2?": "4"}

Stores quiz

questions and

answers.

2
Loop through

questions

for question in

quiz:

Iterates

through the

quiz

dictionary.

3 Get user input

answer =

input(question

+ " ")

Takes user

input as an

answer.

4

Compare user

answer with

correct answer

if answer ==

quiz[question]:

Checks

correctness.

5
Keep track of

score
score += 1

Increments

score for

correct

answers.

Real-Life Project: Python Quiz Game

Project Code:

1. def quiz_game():

2. questions = {

3. "What is the capital of France?": "a",

4. "Which language is used for web development?\n a)

Python\n b) JavaScript\n c) Java\n d) C++\n": "b",

5. "What does CPU stand for?\n a) Central Processing

Unit\n b) Computer Personal Unit\n c) Central Personal

Unit\n d) Computer Processing Unit\n": "a",

6. }

7. score = 0

8. for question, correct_answer in questions.items():

9. user_answer = input(question + "\nYour answer:

").lower()

10. if user_answer == correct_answer:

11. print("Correct!\n")

12. score += 1

13. else:

14. print("Wrong answer!\n")

15. print(f"You scored {score}/{len(questions)}")

16. quiz_game()

Project Code Explanation Table

Lin

e
Code Section Description

1 def quiz_game():
Defines the function for

the quiz game.

2-6 questions = {...}

Creates a dictionary

with quiz questions and

correct answers.

7 score = 0
Initializes the score

variable.

8

for question,

correct_answer in

questions.items():

Iterates through each

question.

9

user_answer =

input(question + "\nYour

answer: ").lower()

Gets user input and

converts it to lowercase.

10-

12

if user_answer ==

correct_answer:

Checks if the answer is

correct and updates the

score.

13-

14
else:

Prints "Wrong answer!"

if the response is

incorrect.

15
print(f"You scored

{score}/{len(questions)}")
Displays the final score.

16 quiz_game()
Calls the quiz function

to start the game.

Expected Results

The program presents the user with a series of

multiple-choice questions.

The user enters an answer, and the program

provides feedback on correctness.

At the end, the program displays the final score.

Hands-On Exercise Try improving the Python Quiz Game

with these additional features:

1. Add more questions with different difficulty

levels.

2. Create a GUI version using Tkinter for an

interactive experience.

3. Enhance the program to keep track of high

scores.

4. Implement a timer to limit the time for each

question.

5. Allow users to select quiz categories before

starting.

Conclusion This Python Quiz Game project introduces

Python concepts such as loops, dictionaries, user input

handling, and scoring logic. By expanding this project,

developers can create a more interactive and engaging

educational tool.

Chapter 72: Palindrome Number

Finder
Overview A Palindrome Number Finder is a program that

determines whether a given number reads the same

forward and backward. Palindromes are commonly used in

mathematical computations and problem-solving scenarios.

This chapter covers the step-by-step implementation of

checking if a number is a palindrome, handling user input,

and using different approaches for efficiency.

Key Concepts of Palindrome Number Finder in Python

Definition of a Palindrome Number:

A number is a palindrome if it remains

the same when reversed (e.g., 121 ,

454 , 9889).

Using String Conversion:

Convert the number to a string and

compare it with its reversed version.

Using Mathematical Approach:

Reverse the number mathematically

without converting it to a string.

Example Palindrome Number Checks

Input Number Palindrome?

121 Yes

123 No

9889 Yes

45654 Yes

Basic Rules for Palindrome Number Finder in Python

Rule Correct Example

Convert the number to a string

and reverse it
str(num)[::-1]

Compare original and reversed if str(num) == str(num)

number [::-1]:

Use mathematical method to

reverse number
while num > 0:

Syntax Table

SL Concept
Syntax/Examp

le
Description

1
Get user

input

num =

int(input("Enter

a number: "))

Takes user input

as an integer.

2
Convert to

string
str(num)

Converts the

number to a

string for

comparison.

3
Reverse the

string
str(num)[::-1]

Reverses the

number as a

string.

4

Compare

original and

reversed

number

if str(num) ==

str(num)[::-1]:

Checks if the

number is a

palindrome.

5 Print result
print("It is a

palindrome.")

Displays the

output.

Real-Life Project: Palindrome Number Finder

Project Code:

1. def is_palindrome_number(num):

2. return str(num) == str(num)[::-1]

3. num = int(input("Enter a number: "))

4. if is_palindrome_number(num):

5. print(f"{num} is a palindrome number.")

6. else:

7. print(f"{num} is NOT a palindrome number.")

Project Code Explanation Table

Lin

e
Code Section Description

1
def

is_palindrome_number(num):

Defines a function to

check if a number is

a palindrome.

2
return str(num) == str(num)

[::-1]

Compares the

original and reversed

number.

3
num = int(input("Enter a

number: "))

Takes user input as

an integer.

4-7
if

is_palindrome_number(num):

Calls the function and

prints whether the

number is a

palindrome.

Expected Results

The program asks the user to enter a number.

It processes the number and checks if it is a

palindrome.

It prints a message indicating whether the number

is a palindrome.

Hands-On Exercise Try improving the Palindrome Number

Finder with these additional features:

1. Use a mathematical approach without

converting the number to a string.

2. Create a GUI version using Tkinter for

interactive input.

3. Modify the program to check for palindrome

numbers within a given range.

4. Enable case-insensitive handling for

numbers with leading zeros.

5. Allow batch processing of multiple numbers

at once.

Conclusion This Palindrome Number Finder project

introduces Python concepts such as string manipulation,

loops, and conditionals. By expanding this project,

developers can explore more advanced number-processing

applications in mathematical computations and data

validation.

Chapter 73: Create a Simple

Quiz App
Overview A Simple Quiz App is an interactive application

where users answer multiple-choice questions. This project

helps in understanding lists, dictionaries, loops,

conditionals, and user input handling in Python.

This chapter covers the step-by-step implementation of a

quiz app, storing questions and answers, scoring, and

enhancing user interaction.

Key Concepts of a Simple Quiz App in Python

Using Dictionaries to Store Questions and

Answers:

A dictionary can store questions as keys

and correct answers as values.

Using Loops for Repeated Questions:

Iterating through questions to present

them to the user.

Scoring System:

Keeping track of correct and incorrect

answers to calculate a final score.

Example Quiz Structure

Question Options

Correc

t

Answe

r

What is the output of print(2

* 3) ?

a) 6, b) 8, c) 5, d)

3
a

What data type is True in

Python?

a) int, b) bool, c)

string, d) float
b

Which keyword is used to

define a function in Python?

a) define, b) def,

c) func, d)

function

b

Basic Rules for a Quiz App in Python

Rule Correct Example

Use dictionaries to store

questions and answers

quiz = {"Question":

"Answer"}

Use a loop to iterate through

questions
for question in quiz:

Compare user input with the

correct answer

if user_answer ==

correct_answer:

Keep track of the score score += 1

Syntax Table

SL Concept
Syntax/Examp

le
Description

1

Define a

dictionary for

questions

quiz = {"What

is 2+2?": "4"}

Stores quiz

questions and

answers.

2
Loop through

questions

for question in

quiz:

Iterates

through the

quiz

dictionary.

3 Get user input

answer =

input(question

+ " ")

Takes user

input as an

answer.

4

Compare user

answer with

correct answer

if answer ==

quiz[question]:

Checks

correctness.

5
Keep track of

score
score += 1

Increments

score for

correct

answers.

Real-Life Project: Simple Quiz App

Project Code:

1. def quiz_game():

2. questions = {

3. "What is the capital of France?": "a",

4. "Which language is used for web development?\n a)

Python\n b) JavaScript\n c) Java\n d) C++\n": "b",

5. "What does CPU stand for?\n a) Central Processing

Unit\n b) Computer Personal Unit\n c) Central Personal

Unit\n d) Computer Processing Unit\n": "a",

6. }

7. score = 0

8. for question, correct_answer in questions.items():

9. user_answer = input(question + "\nYour answer:

").lower()

10. if user_answer == correct_answer:

11. print("Correct!\n")

12. score += 1

13. else:

14. print("Wrong answer!\n")

15. print(f"You scored {score}/{len(questions)}")

16. quiz_game()

Project Code Explanation Table

Lin

e
Code Section Description

1 def quiz_game():
Defines the function for

the quiz app.

2-6 questions = {...}

Creates a dictionary

with quiz questions and

correct answers.

7 score = 0
Initializes the score

variable.

8

for question,

correct_answer in

questions.items():

Iterates through each

question.

9

user_answer =

input(question + "\nYour

answer: ").lower()

Gets user input and

converts it to lowercase.

10-

12

if user_answer ==

correct_answer:

Checks if the answer is

correct and updates the

score.

13-

14
else:

Prints "Wrong answer!"

if the response is

incorrect.

15
print(f"You scored

{score}/{len(questions)}")
Displays the final score.

16 quiz_game()
Calls the quiz function

to start the game.

Expected Results

The program presents the user with a series of

multiple-choice questions.

The user enters an answer, and the program

provides feedback on correctness.

At the end, the program displays the final score.

Hands-On Exercise Try improving the Simple Quiz App

with these additional features:

1. Add more questions with different difficulty

levels.

2. Create a GUI version using Tkinter for an

interactive experience.

3. Enhance the program to keep track of high

scores.

4. Implement a timer to limit the time for each

question.

5. Allow users to select quiz categories before

starting.

Conclusion This Simple Quiz App project introduces Python

concepts such as loops, dictionaries, user input handling,

and scoring logic. By expanding this project, developers can

create a more interactive and engaging educational tool.

Chapter 74: Create a Simple

Text Editor
Overview A Simple Text Editor is an interactive application

that allows users to write, save, and open text files. This

project helps in understanding GUI programming using

Tkinter, file handling, and event-driven programming in

Python.

This chapter covers the step-by-step implementation of a

text editor, handling user input, integrating basic file

operations, and improving the interface.

Key Concepts of a Simple Text Editor in Python

Using Tkinter for GUI Development:

Creating a text area using Tkinter’s Text

widget.

File Handling for Saving and Opening Files:

Using Python’s open() function to read

and write files.

Menu Bar for File Operations:

Creating a menu bar for Open , Save ,

and Exit options.

Example Text Editor Functions

Feature Functionality

Open File Loads a text file into the editor.

Save File Saves the content to a text file.

Exit Application Closes the editor safely.

Basic Rules for a Simple Text Editor in Python

Rule Correct Example

Use Tkinter to create a

text widget
Text(root, wrap='word')

Use open() to read

files
file.read()

Use write() to save

content
file.write(data)

Handle errors

gracefully

try: open(filename) except:

print("Error")

Syntax Table

SL Concept
Syntax/Exampl

e
Description

1

Create

Tkinter

window

root = Tk()
Initializes the

main window.

2
Add text

widget

Text(root,

wrap='word')

Adds a text

editor area.

3
Open a

file

with

open(filename,

'r') as file:

Reads content

from a file.

4
Save a

file

with

open(filename,

'w') as file:

Writes content to

a file.

5
Create

menu bar

menu =

Menu(root)

Adds a menu bar

for file

operations.

Real-Life Project: Simple Text Editor

Project Code:

1. from tkinter import *

2. from tkinter import filedialog

3. def open_file():

4. file =

filedialog.askopenfilename(defaultextension=".txt",

filetypes=[("Text Files", "*.txt"), ("All Files", "*.*")])

5. if file:

6. text_area.delete(1.0, END)

7. with open(file, "r") as f:

8. text_area.insert(INSERT, f.read())

9. def save_file():

10. file =

filedialog.asksaveasfilename(defaultextension=".txt",

filetypes=[("Text Files", "*.txt"), ("All Files", "*.*")])

11. if file:

12. with open(file, "w") as f:

13. f.write(text_area.get(1.0, END))

14. root = Tk()

15. root.title("Simple Text Editor")

16. root.geometry("500x500")

17. text_area = Text(root, wrap='word')

18. text_area.pack(expand=YES, fill=BOTH)

19. menu_bar = Menu(root)

20. file_menu = Menu(menu_bar, tearoff=0)

21. file_menu.add_command(label="Open",

command=open_file)

22. file_menu.add_command(label="Save",

command=save_file)

23. file_menu.add_separator()

24. file_menu.add_command(label="Exit",

command=root.quit)

25. menu_bar.add_cascade(label="File", menu=file_menu)

26. root.config(menu=menu_bar)

27. root.mainloop()

Project Code Explanation Table

Li

ne
Code Section Description

1-2
from tkinter import * , from tkinter

import filedialog

Imports

Tkinter and

file dialog for

GUI and file

handling.

3-8 def open_file(): Defines a

function to

open a file

and insert its

content into

the text

area.

4 file = filedialog.askopenfilename(...)

Opens a file

selection

dialog for

the user.

5 if file:

Ensures that

a file is

selected

before

proceeding.

6 text_area.delete(1.0, END)

Clears the

text area

before

inserting

new content.

7-8 with open(file, "r") as f:

Reads the

content of

the selected

file and

inserts it

into the text

area.

9-

13
def save_file():

Defines a

function to

save the

content of

the text area

into a file.

10 file = filedialog.asksaveasfilename(...) Opens a

save dialog

for the user

to choose a

file location.

11 if file:

Ensures that

a file is

selected

before

saving.

12-

13
with open(file, "w") as f:

Saves the

content of

the text area

into the

chosen file.

14-

16

root = Tk() , root.title(...) ,

root.geometry(...)

Initializes

the Tkinter

window and

sets its

properties.

17-

18
text_area = Text(root, wrap='word')

Creates a

text area

where users

can write

and edit

text.

19-

26

menu_bar = Menu(root) , file_menu =

Menu(...)

Creates a

menu bar

with options

for opening,

saving, and

exiting.

21-

22
file_menu.add_command(...)

Adds

commands

for opening

and saving

files.

23 file_menu.add_separator()

Adds a

separator in

the menu for

better visual

organization.

24
file_menu.add_command(label="Exit",

command=root.quit)

Adds an exit

command to

close the

editor.

25-

26

menu_bar.add_cascade(...) ,

root.config(menu=menu_bar)

Configures

the menu

bar in the

application

window.

27 root.mainloop()

Starts the

Tkinter

event loop

to run the

application.

Expected Results

The program opens a simple text editor.

Users can write text and save it to a file.

Users can open and edit existing text files.

Hands-On Exercise Try improving the Simple Text Editor

with these additional features:

1. Add functionality to open multiple file

formats (e.g., .csv , .log).

2. Create a toolbar for quick access to Save ,

Open , and Exit functions.

3. Enable text formatting options like bold,

italic, and underline.

4. Implement a ‘Find and Replace’ feature for

editing text.

5. Allow users to change fonts and colors.

Conclusion This Simple Text Editor project introduces

Python concepts such as Tkinter GUI development, file

handling, and event-driven programming. By expanding this

project, developers can create more advanced text editing

applications.

Chapter 75: Calculator Using

GUI
Overview A GUI-based calculator is an interactive

application that allows users to perform basic arithmetic

operations like addition, subtraction, multiplication, and

division. This project helps in understanding GUI

programming using Tkinter, event handling, and user

interface design in Python.

This chapter covers the step-by-step implementation of a

GUI calculator, handling user input, creating buttons for

operations, and displaying results.

Key Concepts of a GUI Calculator in Python

Using Tkinter for GUI Development:

Creating a graphical interface with

buttons, labels, and an entry field.

Event Handling for Button Clicks:

Associating button clicks with arithmetic

operations.

Displaying Results Dynamically:

Updating the entry field with user input

and calculation results.

Example Calculator Operations

Input Expression Result

5 + 3 8

12 - 7 5

6 × 4 24

10 ÷ 2 5

Basic Rules for a GUI Calculator in Python

Rule Correct Example

Use Tkinter to create an

entry field

Entry(root,

textvariable=expression)

Use buttons for numeric

and operator input

Button(root, text="+",

command=lambda: click("+"))

Use eval() to perform

calculations
result = eval(expression)

Handle errors gracefully
try: eval(expression) except:

print("Error")

Syntax Table

SL Concept Syntax/Example Description

1

Create

Tkinter

window

root = Tk()

Initializes

the main

window.

2

Add an

entry

field

Entry(root,

textvariable=expressio

n)

Creates an

input field

for numbers.

3
Create

buttons

Button(root, text="+",

command=lambda:

click("+"))

Adds a

button for

addition.

4

Evaluate

expressi

on

result =

eval(expression.get())

Computes

the

mathematic

al result.

5

Clear the

entry

field

expression.set("")
Clears the

input field.

Real-Life Project: GUI Calculator

Project Code:

1. from tkinter import *

2. def click(button_value):

3. current_text = expression.get()

4. expression.set(current_text + button_value)

5. def clear():

6. expression.set("")

7. def evaluate():

8. try:

9. result = eval(expression.get())

10. expression.set(result)

11. except:

12. expression.set("Error")

13. root = Tk()

14. root.title("Simple Calculator")

15. root.geometry("300x400")

16. expression = StringVar()

17. entry_field = Entry(root, textvariable=expression, font=

("Arial", 20))

18. entry_field.grid(row=0, column=0, columnspan=4)

19. buttons = [

20. '7', '8', '9', '/',

21. '4', '5', '6', '*',

22. '1', '2', '3', '-',

23. '0', 'C', '=', '+'

24.]

25. row, col = 1, 0

26. for button in buttons:

27. Button(root, text=button, width=5, height=2, font=

("Arial", 18),

28. command=lambda btn=button: click(btn) if btn

not in ['C', '='] else (clear() if btn == 'C' else

evaluate())).grid(row=row, column=col)

29. col += 1

30. if col > 3:

31. col = 0

32. row += 1

33. root.mainloop()

Project Code Explanation Table

Lin Code Section Description

e

1
from tkinter import

*

Imports Tkinter for GUI

development.

2-4
def

click(button_value):

Updates the entry field with

clicked button value.

5-6 def clear():
Clears the entry field when 'C'

is pressed.

7-

12
def evaluate():

Computes the entered

mathematical expression.

13-

15
root = Tk()

Initializes the Tkinter window

and sets its title and size.

16-

18

expression =

StringVar()

Defines a variable to hold the

expression entered by the user.

19-

24
buttons = [...]

Defines button labels for the

calculator.

25-

32

for button in

buttons:

Creates buttons dynamically

and assigns them functions.

33 root.mainloop()

Runs the Tkinter main event

loop to keep the application

running.

Expected Results

The program opens a GUI-based calculator.

Users can enter numbers and perform basic

arithmetic operations.

The calculator evaluates the expression and

displays the result.

Hands-On Exercise Try improving the GUI Calculator with

these additional features:

1. Add support for square root and power

functions.

2. Create a scientific calculator with

trigonometric functions.

3. Enable keyboard input for entering numbers

and operations.

4. Modify the layout to enhance user

experience.

5. Implement a memory function to store

previous calculations.

Conclusion This GUI Calculator project introduces Python

concepts such as Tkinter GUI development, event handling,

and mathematical evaluations. By expanding this project,

developers can create more advanced and user-friendly

calculator applications.

Chapter 76: Reverse a Number

Overview Reversing a number is a fundamental exercise in

Python that helps in understanding mathematical

operations, loops, and string manipulation. This operation is

widely used in number processing, encryption techniques,

and data transformations.

This chapter covers the step-by-step implementation of

reversing a number using different approaches, handling

user input, and ensuring efficiency.

Key Concepts of Reversing a Number in Python

Using Mathematical Operations:

Extracting digits and reversing their

order using modulus and division.

Using String Manipulation:

Converting the number to a string and

reversing it using slicing.

Handling Edge Cases:

Handling negative numbers and leading

zeros properly.

Example Number Reversals

Input Number Reversed Number

12345 54321

9087 7809

-456 -654

100 1

Basic Rules for Reversing a Number in Python

Rule Correct Example

Convert the number to a string

and reverse it
str(num)[::-1]

Use mathematical operations

for reversing

rev_num = rev_num * 10

+ num % 10

Handle negative numbers if num < 0: reverse = -

correctly reverse

Syntax Table

SL
Conce

pt
Syntax/Example Description

1

Get

user

input

num =

int(input("Enter a

number: "))

Takes user input as

an integer.

2

Conver

t to

string

str(num)

Converts the

number to a string

for manipulation.

3

Revers

e the

string

str(num)[::-1]

Reverses the

number using

slicing.

4

Conver

t back

to

integer

int(reversed_strin

g)

Converts the

reversed string

back to an integer.

5

Use a

loop

for

reversa

l

while num > 0:

rev = rev * 10 +

num % 10

Uses arithmetic

operations to

reverse a number.

Real-Life Project: Reverse a Number

Project Code:

1. def reverse_number(num):

2. negative = num < 0

3. num = abs(num)

4. reversed_num = int(str(num)[::-1])

5. return -reversed_num if negative else reversed_num

6. num = int(input("Enter a number: "))

7. print("Reversed number:", reverse_number(num))

Project Code Explanation Table

Lin

e
Code Section Description

1 def Defines a function to

reverse_number(num): reverse a number.

2 negative = num < 0
Checks if the number is

negative.

3 num = abs(num)
Converts negative numbers

to positive for processing.

4
reversed_num =

int(str(num)[::-1])

Converts the number to a

string, reverses it, and

converts it back to an

integer.

5

return -reversed_num if

negative else

reversed_num

Restores the negative sign if

applicable.

6
num = int(input("Enter

a number: "))

Takes user input as an

integer.

7

print("Reversed

number:",

reverse_number(num))

Calls the function and

displays the reversed

number.

Expected Results

The program asks the user to enter a number.

It processes the number and reverses its digits.

It prints the reversed number, handling negative

numbers correctly.

Hands-On Exercise Try improving the Number Reversal

program with these additional features:

1. Use a loop instead of string manipulation for

reversing the number.

2. Create a GUI version using Tkinter for

interactive input.

3. Modify the program to reverse floating-point

numbers.

4. Enable batch processing of multiple

numbers at once.

5. Ensure that the program handles leading

zeros correctly.

Conclusion This Number Reversal project introduces

Python concepts such as string manipulation, loops, and

conditionals. By expanding this project, developers can

explore more advanced number-processing applications in

mathematical computations and data analysis.

Chapter 77: Simple Email

Validation
Overview Email validation is an essential process used to

verify if an email address follows the correct format. This

project helps in understanding string manipulation, regular

expressions, and user input validation in Python.

This chapter covers the step-by-step implementation of

validating an email address, handling user input, and

ensuring correctness using different approaches.

Key Concepts of Email Validation in Python

Using String Methods:

Checking if an email contains '@' and a

domain.

Using Regular Expressions (re module):

Using regex patterns to match valid

email formats.

Handling Edge Cases:

Ensuring the email has valid characters

and a correct domain structure.

Example Email Validation

Input Email Valid?

user@example.com Yes

hello@domain No

test.email@org.net Yes

user@.com No

Basic Rules for Email Validation in Python

Rule Correct Example

An email must

contain '@'
if "@" in email:

A domain

must follow

if email.split("@")[1]:

mailto:user@example.com
mailto:test.email@org.net

'@'

Use regex for

precise

matching

re.match(r"^[a-zA-Z0-9._%+-]+@[a-zA-

Z0-9.-]+\.[a-zA-Z]{2,}$", email)

Syntax Table

SL
Concep

t
Syntax/Example Description

1

Get

user

input

email = input("Enter

an email: ")

Takes user

input as a

string.

2
Check

for '@'
if "@" in email:

Ensures '@' is

present in the

email.

3

Use

regex

for

validati

on

re.match(pattern,

email)

Uses regex to

validate the

format.

4

Print

validati

on

result

print("Valid email" if

valid else "Invalid

email")

Displays

whether the

email is valid

or not.

Real-Life Project: Simple Email Validator

Project Code:

1. import re

2. def is_valid_email(email):

3. pattern = r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-

zA-Z]{2,}$"

4. return re.match(pattern, email)

5. email = input("Enter an email: ")

6. if is_valid_email(email):

7. print(f"'{email}' is a valid email address.")

8. else:

9. print(f"'{email}' is NOT a valid email address.")

Project Code Explanation Table

Lin

e
Code Section Description

1 import re Imports the regex

module for pattern

matching.

2-4 def is_valid_email(email):
Defines a function to

validate an email.

3

pattern = r"^[a-zA-Z0-

9._%+-]+@[a-zA-Z0-9.-]+\.

[a-zA-Z]{2,}$"

Defines the regex

pattern for validation.

4
return re.match(pattern,

email)

Checks if the email

matches the pattern.

5
email = input("Enter an

email: ")

Takes user input for an

email.

6-9 if is_valid_email(email):

Calls the function and

prints whether the

email is valid.

Expected Results

The program asks the user to enter an email

address.

It validates the format using regex.

It prints whether the email is valid or not.

Hands-On Exercise Try improving the Email Validator with

these additional features:

1. Allow the program to check for popular

email domain extensions (e.g., .com, .net,

.org).

2. Create a GUI version using Tkinter for

interactive input.

3. Modify the program to detect temporary or

disposable email addresses.

4. Enable batch processing of multiple emails

at once.

5. Enhance error messages to specify why an

email is invalid.

Conclusion This Email Validation project introduces Python

concepts such as string manipulation, regex validation, and

user input handling. By expanding this project, developers

can explore more advanced text validation applications in

data processing and user authentication.

Chapter 78: Convert Hours to

Minutes
Overview Converting hours to minutes is a fundamental

exercise in Python that helps in understanding

mathematical operations, user input handling, and simple

calculations. This operation is widely used in time-related

applications, scheduling systems, and data conversions.

This chapter covers the step-by-step implementation of

converting hours to minutes, handling user input, and

ensuring efficiency.

Key Concepts of Converting Hours to Minutes in

Python

Using Mathematical Operations:

The formula for converting hours to

minutes is: Minutes=Hours×60Minutes =

Hours \60

Handling User Input:

Taking input from users and ensuring

data type consistency.

Displaying the Result in a Readable Format:

Using formatted output for clarity.

Example Time Conversions

Hours Minutes

1 60

2.5 150

4 240

0.75 45

Basic Rules for Converting Hours to Minutes in

Python

Rule Correct Example

Multiply hours by 60 minutes = hours * 60

Use float for precise

input handling

hours = float(input("Enter hours:

"))

Format the output for

readability

print(f"{hours} hours =

{minutes} minutes")

Syntax Table

SL Concept Syntax/Example Description

1
Get user

input

hours =

float(input("Enter

hours: "))

Takes time

input from

user.

2

Convert

hours to

minutes

minutes = hours *

60

Applies the

conversion

formula.

3
Print the

result

print(f"Minutes:

{minutes}")

Displays the

converted

value.

Real-Life Project: Convert Hours to Minutes

Project Code:

1. def hours_to_minutes(hours):

2. return hours * 60

3. hours = float(input("Enter hours: "))

4. minutes = hours_to_minutes(hours)

5. print(f"{hours} hours is equal to {minutes} minutes.")

Project Code Explanation Table

Lin

e
Code Section Description

1-2 def hours_to_minutes(hours):

Defines a function to

convert hours to

minutes.

3
hours = float(input("Enter

hours: "))

Takes user input and

converts it to float.

4
minutes =

hours_to_minutes(hours)

Calls the function to

perform the

conversion.

5

print(f"{hours} hours is

equal to {minutes}

minutes.")

Prints the result with

formatted output.

Expected Results

The program asks the user to enter a time in

hours.

It calculates and prints the equivalent time in

minutes.

The output is formatted to ensure readability.

Hands-On Exercise Try improving the Hours to Minutes

Converter with these additional features:

1. Allow users to convert minutes back to

hours as well.

2. Create a GUI version using Tkinter for

interactive input.

3. Handle invalid inputs gracefully using

exception handling.

4. Allow users to input multiple values at once

and display all conversions.

5. Save conversion history to a file for later

reference.

Conclusion This Hours to Minutes Converter project

introduces Python concepts such as mathematical

calculations, user input handling, and output formatting. By

expanding this project, developers can create more

advanced time conversion tools for various applications.

Chapter 79: Text to Speech

Application
Overview A Text to Speech (TTS) application converts

written text into spoken words. This project helps in

understanding Python libraries such as pyttsx3 for text-to-

speech conversion. TTS applications are widely used in

assistive technologies, audiobooks, and automation

systems.

This chapter covers the step-by-step implementation of a

TTS application, handling user input, and generating speech

output using Python.

Key Concepts of a Text to Speech Application in

Python

Using the pyttsx3 Library:

A text-to-speech conversion library that

supports multiple voices and speech rate

control.

Handling User Input:

Accepting text input and processing it for

speech output.

Generating Speech Output:

Using the TTS engine to generate spoken

output.

Example Text-to-Speech Conversions

Input Text Spoken Output

"Hello, World!" Reads "Hello, World!" aloud

"Python is amazing!"
Reads "Python is amazing!"

aloud

"This is a text-to-speech

converter."
Reads the sentence aloud

Basic Rules for a Text-to-Speech Application in

Python

Rule Correct Example

Initialize the TTS

engine
engine = pyttsx3.init()

Set speech rate engine.setProperty('rate', 150)

Select voice
voices =

engine.getProperty('voices')

Convert text to

speech
engine.say("Hello, world!")

Syntax Table

SL
Conce

pt
Syntax/Example Description

1

Import

the

library

import pyttsx3

Loads the text-

to-speech

module.

2

Initializ

e the

engine

engine = pyttsx3.init()

Creates a TTS

engine

instance.

3

Set

speech

rate

engine.setProperty('rate'

, 150)

Adjusts the

speech speed.

4

Set

voice

type

engine.setProperty('voic

e', voices[0].id)

Selects a male

or female

voice.

5

Conver

t text

to

speech

engine.say(text)

Processes the

text and

prepares

speech output.

6

Execut

e

speech

engine.runAndWait()

Plays the

generated

speech.

Real-Life Project: Text to Speech Converter

Project Code:

1. import pyttsx3

2. def text_to_speech(text):

3. engine = pyttsx3.init()

4. engine.setProperty('rate', 150)

5. voices = engine.getProperty('voices')

6. engine.setProperty('voice', voices[0].id) # Selects

default voice

7. engine.say(text)

8. engine.runAndWait()

9. user_text = input("Enter text to convert to speech: ")

10. text_to_speech(user_text)

Project Code Explanation Table

Lin

e
Code Section Description

1 import pyttsx3
Imports the text-to-

speech library.

2 def text_to_speech(text):

Defines a function to

convert text to

speech.

3 engine = pyttsx3.init()
Initializes the TTS

engine.

4
engine.setProperty('rate',

150)

Sets the speech

speed.

5
voices =

engine.getProperty('voices')

Retrieves available

voices.

6
engine.setProperty('voice',

voices[0].id)

Selects the default

voice.

7 engine.say(text)

Processes the given

text for speech

conversion.

8 engine.runAndWait()
Plays the generated

speech.

9
user_text = input("Enter text

to convert to speech: ")
Takes user input.

10 text_to_speech(user_text) Calls the function to

convert and play

speech.

Expected Results

The program asks the user to enter a text string.

It processes the text and generates spoken

output.

The text is read aloud using the selected voice.

Hands-On Exercise Try improving the Text to Speech

Converter with these additional features:

1. Allow users to select different voices

(male/female).

2. Create a GUI version using Tkinter for

interactive input.

3. Enable saving speech output as an audio

file.

4. Allow users to adjust the speech rate

dynamically.

5. Support multi-language speech conversion.

Conclusion This Text to Speech project introduces Python

concepts such as GUI development, audio processing, and

user interaction. By expanding this project, developers can

create more advanced speech-based applications for

accessibility and automation.

Chapter 80: Word Count from a

File
Overview A Word Count application is used to determine

the number of words in a text file. This project helps in

understanding file handling, string manipulation, and text

analysis in Python.

This chapter covers the step-by-step implementation of

reading a file, counting words, and displaying the result

efficiently.

Key Concepts of Word Count in Python

Using File Handling to Read Data:

Opening and reading a text file using

Python’s built-in functions.

Splitting Text into Words:

Using split() to break the text into

words.

Counting Words Efficiently:

Using loops or len() function to count

words accurately.

Example Word Count Results

File Content
Word

Count

"Python is fun." 3

"This is a simple text file." 6

"Hello, world! Welcome to Python." 5

Basic Rules for Word Count in Python

Rule Correct Example

Use open() to read

a file
with open('file.txt', 'r') as file:

Read file contents text = file.read()

Split text into words words = text.split()

Count words word_count = len(words)

Syntax Table

SL
Concep

t
Syntax/Example Description

1
Open a

file

with open('file.txt',

'r') as file:

Opens a text file

in read mode.

2

Read

file

content

s

text = file.read()

Reads the

content of the

file.

3

Split

text into

words

words = text.split()

Breaks the text

into a list of

words.

4
Count

words

word_count =

len(words)

Counts the

number of

words.

5

Print

the

result

print(f'Total words:

{word_count}')

Displays the

word count.

Real-Life Project: Word Count from a File

Project Code:

1. def count_words(filename):

2. try:

3. with open(filename, 'r') as file:

4. text = file.read()

5. words = text.split()

6. return len(words)

7. except FileNotFoundError:

8. return "File not found."

9. filename = input("Enter the file name: ")

10. word_count = count_words(filename)

11. print(f"Total words in {filename}: {word_count}")

Project Code Explanation Table

Lin Code Section Description

e

1 def count_words(filename):
Defines a function to

count words in a file.

2-3
try: with open(filename, 'r')

as file:

Tries to open the file

in read mode.

4 text = file.read()
Reads the entire

content of the file.

5 words = text.split()
Splits the text into

words.

6 return len(words)
Returns the word

count.

7-8 except FileNotFoundError:

Handles cases where

the file does not

exist.

9
filename = input("Enter the

file name: ")

Takes the filename as

user input.

10
word_count =

count_words(filename)

Calls the function to

count words.

11
print(f"Total words in

{filename}: {word_count}")
Displays the result.

Expected Results

The program asks the user to enter a file name.

It reads the file and counts the number of words.

It prints the total word count.

If the file does not exist, it displays an error

message.

Hands-On Exercise Try improving the Word Count program

with these additional features:

1. Ignore punctuation and special characters

when counting words.

2. Create a GUI version using Tkinter for

interactive file selection.

3. Allow users to count words from multiple

files at once.

4. Generate a word frequency report to show

the most common words.

5. Save the word count results to a new file.

Conclusion This Word Count project introduces Python

concepts such as file handling, string manipulation, and

error handling. By expanding this project, developers can

build more advanced text processing tools for analyzing

documents, reports, and large datasets.

Chapter 81: Phone Number

Validator
Overview A Phone Number Validator is a program that

verifies whether a given phone number follows the correct

format. This project helps in understanding string

manipulation, regular expressions, and input validation in

Python.

This chapter covers the step-by-step implementation of

validating phone numbers, handling different formats, and

ensuring accuracy using Python.

Key Concepts of Phone Number Validation in Python

Using Regular Expressions (re module):

Defining patterns to validate phone

numbers.

Handling Different Phone Number Formats:

Supporting various formats like (123)

456-7890 , 123-456-7890 , +1 123 456

7890 .

Detecting Invalid Numbers:

Ensuring numbers have valid digits and

length constraints.

Example Phone Number Validations

Input Phone Number Valid?

9876543210 Yes

+1 234-567-8901 Yes

123-45-6789 No

(999) 999-9999 Yes

abc1234567 No

Basic Rules for Phone Number Validation in Python

Rule Correct Example

Use regex for precise re.match(r"^[0-9]{10}$",

matching number)

Accept country codes

with +

re.match(r"^\+?[0-9]{1,3} [0-

9]{10}$", number)

Remove non-digit

characters for validation
re.sub(r"\D", "", number)

Syntax Table

SL
Concep

t
Syntax/Example Description

1

Import

regex

module

import re

Loads the regex

module for

pattern matching.

2

Define

validatio

n

pattern

pattern = r"^\+?

[0-9]{1,3}[-.\s]?

[0-9]{10}$"

Specifies the valid

phone number

format.

3

Match

user

input

if

re.match(pattern,

phone_number):

Checks if the

input matches the

pattern.

4

Remove

special

characte

rs

clean_number =

re.sub(r"\D", "",

phone_number)

Cleans non-

numeric

characters for

processing.

5

Print

validatio

n result

print("Valid phone

number")

Displays whether

the phone

number is valid or

not.

Real-Life Project: Phone Number Validator

Project Code:

1. import re

2. def is_valid_phone_number(phone_number):

3. pattern = r"^\+?[0-9]{1,3}[-.\s]?[0-9]{10}$"

4. return re.match(pattern, phone_number)

5. phone_number = input("Enter a phone number: ")

6. if is_valid_phone_number(phone_number):

7. print(f"'{phone_number}' is a valid phone number.")

8. else:

9. print(f"'{phone_number}' is NOT a valid phone

number.")

Project Code Explanation Table

Li

ne
Code Section

Descriptio

n

1 import re

Imports the

regex

module for

pattern

matching.

2-4
def

is_valid_phone_number(phone_number):

Defines a

function to

validate

phone

numbers.

3
pattern = r"^\+?[0-9]{1,3}[-.\s]?[0-9]

{10}$"

Defines the

regex

pattern for

validation.

4
return re.match(pattern,

phone_number)

Checks if

the phone

number

matches

the

pattern.

5
phone_number = input("Enter a phone

number: ")

Takes user

input for a

phone

number.

6-9
if

is_valid_phone_number(phone_number):

Calls the

function

and prints

whether

the phone

number is

valid.

Expected Results

The program asks the user to enter a phone

number.

It validates the format using regex.

It prints whether the phone number is valid or not.

Hands-On Exercise Try improving the Phone Number

Validator with these additional features:

1. Allow the program to format valid phone

numbers into a standard structure.

2. Create a GUI version using Tkinter for

interactive input.

3. Modify the program to detect specific

country codes.

4. Enable batch processing of multiple phone

numbers at once.

Conclusion This Phone Number Validator project introduces

Python concepts such as string manipulation, regex

validation, and user input handling. By expanding this

project, developers can explore more advanced text

validation applications in data processing and user

authentication.

Chapter 82: Convert Celsius to

Fahrenheit
Overview Temperature conversion from Celsius to

Fahrenheit is a simple yet essential operation in

programming. This project helps in understanding

mathematical operations, user input handling, and

formatted output in Python. The conversion formula is

widely used in weather applications and scientific

calculations.

This chapter covers the step-by-step implementation of

converting Celsius to Fahrenheit, handling user input, and

displaying results efficiently.

Key Concepts of Celsius to Fahrenheit Conversion in

Python

Using Mathematical Operations:

The formula for conversion is:

Celsius= ((Fahrenheit−32)×5)/6

Handling User Input:

Accepting temperature values in Celsius

and ensuring data type consistency.

Displaying the Result in a Readable Format:

Using formatted output for clarity.

Example Temperature Conversions

Celsius Fahrenheit

0 32.0

25 77.0

37 98.6

-10 14.0

Basic Rules for Celsius to Fahrenheit Conversion in

Python

Rule Correct Example

Multiply Celsius by 9/5

and add 32

fahrenheit = (celsius * 9/5) +

32

Use float for precise

input handling

celsius = float(input("Enter

Celsius: "))

Format the output for

readability

print(f"{celsius}°C =

{fahrenheit}°F")

Syntax Table

SL Concept Syntax/Example Description

1
Get user

input

celsius =

float(input("Enter

Celsius: "))

Takes

temperature

input from the

user.

2

Apply

conversio

n formula

fahrenheit =

(celsius * 9/5) + 32

Computes the

Fahrenheit

equivalent.

3
Print the

result

print(f"{celsius}°C

= {fahrenheit}°F")

Displays the

converted

temperature.

Real-Life Project: Convert Celsius to Fahrenheit

Project Code:

1. def celsius_to_fahrenheit(celsius):

2. return (celsius * 9/5) + 32

3. celsius = float(input("Enter Celsius temperature: "))

4. fahrenheit = celsius_to_fahrenheit(celsius)

5. print(f"{celsius}°C is equal to {fahrenheit}°F")

Project Code Explanation Table

Lin

e
Code Section Description

1-2
def

celsius_to_fahrenheit(celsius):

Defines a function to

convert Celsius to

Fahrenheit.

3
celsius = float(input("Enter

Celsius temperature: "))

Takes user input and

converts it to float.

4
fahrenheit =

celsius_to_fahrenheit(celsius)

Calls the function to

perform the

conversion.

5
print(f"{celsius}°C is equal to

{fahrenheit}°F")

Prints the result with

formatted output.

Expected Results

The program asks the user to enter a temperature

in Celsius.

It calculates and prints the equivalent

temperature in Fahrenheit.

The output is formatted for clarity and accuracy.

Hands-On Exercise Try improving the Celsius to Fahrenheit

Converter with these additional features:

1. Allow users to convert Fahrenheit back to

Celsius as well.

2. Create a GUI version using Tkinter for

interactive input.

3. Handle invalid inputs gracefully using

exception handling.

4. Allow users to input multiple values at once

and display all conversions.

5. Save conversion history to a file for later

reference.

Conclusion This Celsius to Fahrenheit Converter project

introduces Python concepts such as mathematical

calculations, user input handling, and output formatting. By

expanding this project, developers can create more

advanced temperature conversion tools for various

applications.

Chapter 83: Write a Program to Create

a Folder
Overview Creating a folder (directory) using Python is an essential skill

in file handling. This operation is commonly used in organizing files,

saving application-generated content, and automating file system

management.

This chapter covers the step-by-step implementation of creating a folder,

handling errors, and verifying folder existence before creation.

Key Concepts of Creating a Folder in Python

Using os and pathlib Modules:

os.mkdir() and pathlib.Path.mkdir() are two

common methods to create directories.

Handling File System Errors:

Checking if a folder exists before attempting to

create one to avoid errors.

Creating Nested Directories:

Using os.makedirs() to create multiple levels of

directories at once.

Example Folder Creation

Folder Name Creation Method

MyFolder os.mkdir("MyFolder")

Projects/Python os.makedirs("Projects/Python")

Documents/NewFold

er

Path("Documents/NewFolder").mkdir(parents=Tr

ue, exist_ok=True)

Basic Rules for Creating a Folder in Python

Rule Correct Example

Use os.mkdir() for a

single folder
os.mkdir("MyFolder")

Use os.makedirs() for

nested folders
os.makedirs("Parent/Child")

Use pathlib.Path.mkdir()

for flexibility

Path("Folder").mkdir(parents=True,

exist_ok=True)

Check if a folder exists

before creating it

if not os.path.exists("Folder"):

os.mkdir("Folder")

Syntax Table

SL
Conce

pt
Syntax/Example

Descripti

on

1 Import import os Loads the

require

d

modul

e

OS module

for file

system

operations

.

2

Create

a

single

folder

os.mkdir("MyFolder")

Creates a

folder in

the

current

directory.

3

Create

nested

folders

os.makedirs("Parent/Child")

Creates

parent and

child

directories

if they

don’t

exist.

4

Check

if

folder

exists

before

creatin

g

if not os.path.exists("Folder"):

os.mkdir("Folder")

Prevents

errors by

verifying

existence.

5

Use

pathli

b for

folder

creatio

n

Path("NewFolder").mkdir(parents=True,

exist_ok=True)

Creates a

folder

using an

alternative

method.

Real-Life Project: Create a Folder

Project Code:

1. import os

2. def create_folder(folder_name):

3. if not os.path.exists(folder_name):

4. os.mkdir(folder_name)

5. print(f"Folder '{folder_name}' created successfully.")

6. else:

7. print(f"Folder '{folder_name}' already exists.")

8. folder_name = input("Enter the folder name to create: ")

9. create_folder(folder_name)

Project Code Explanation Table

Lin

e
Code Section Description

1 import os
Imports the OS module

for file operations.

2 def create_folder(folder_name):
Defines a function to

create a folder.

3 if not os.path.exists(folder_name):
Checks if the folder

already exists.

4 os.mkdir(folder_name)
Creates the folder if it

does not exist.

5
print(f"Folder '{folder_name}'

created successfully.")

Displays success

message.

6-7 else:
Handles the case when

the folder already exists.

8
folder_name = input("Enter the

folder name to create: ")

Takes folder name input

from the user.

9 create_folder(folder_name)
Calls the function to

create the folder.

Expected Results

The program asks the user to enter a folder name.

It checks if the folder already exists.

If not, it creates the folder and prints a success message.

If the folder exists, it notifies the user.

Hands-On Exercise Try improving the Folder Creator with these

additional features:

1. Modify the program to create multiple folders at once.

2. Create a GUI version using Tkinter for interactive

input.

3. Allow users to specify the folder location instead of

using the current directory.

4. Enhance error handling for permission issues.

5. Automatically organize files into the created folder.

Chapter 84: Check if a String is a

Substring of Another String
Overview Checking if one string is a substring of another is a common

operation in text processing and data validation. This concept is used in

search engines, authentication systems, and string manipulation tasks.

This chapter covers the step-by-step implementation of checking for

substrings, handling user input, and using different methods to verify

substring presence in Python.

Key Concepts of Substring Checking in Python

Using the in Operator:

The simplest way to check if one string exists

within another.

Using String Methods (find() and index()):

The find() method returns the index of the first

occurrence of a substring.

The index() method works similarly but raises an

exception if the substring is not found.

Using Regular Expressions (re module):

Allows pattern-based substring matching.

Example Substring Checks

String Substring Exists?

"Hello, world!" "world" Yes

"Python programming" "Java" No

"abcdefg" "cde" Yes

Basic Rules for Checking Substrings in Python

Rule Correct Example

Use in for simple substring search if "apple" in "pineapple":

Use find() to get the position position = text.find("apple")

Use index() to locate a substring position = text.index("apple")

Use regex for complex pattern

matching
re.search("apple", text)

Syntax Table

SL Concept Syntax/Example Description

1 Get user input
text = input("Enter

main string: ")

Takes input from

the user.

2
Use in

operator
if substring in text:

Checks if the

substring exists.

3
Use find()

method

position =

text.find(substring)

Finds the position

of the substring.

4
Use index()

method

position =

text.index(substring)

Returns the index

or raises an error.

5

Use regex for

advanced

search

re.search(pattern,

text)

Matches

substrings using

patterns.

Real-Life Project: Substring Checker

Project Code:

1. def check_substring(main_string, substring):

2. if substring in main_string:

3. print(f"'{substring}' is found in the main string.")

4. else:

5. print(f"'{substring}' is NOT found in the main string.")

6. main_string = input("Enter the main string: ")

7. substring = input("Enter the substring to check: ")

8. check_substring(main_string, substring)

Project Code Explanation Table

Lin

e
Code Section Description

1
def check_substring(main_string,

substring):

Defines a function to

check if a substring exists.

2 if substring in main_string:
Checks if the substring is

present in the main string.

3
print(f"'{substring}' is found in the

main string.")

Displays a success

message if the substring

exists.

4-5 else:
Displays a message if the

substring is not found.

6
main_string = input("Enter the main

string: ")

Takes the main string

input from the user.

7
substring = input("Enter the

substring to check: ")

Takes the substring input

from the user.

8
check_substring(main_string,

substring)

Calls the function to check

for the substring.

Expected Results

The program asks the user to enter a main string and a

substring.

It checks if the substring exists within the main string.

It prints a message indicating whether the substring is found

or not.

Hands-On Exercise Try improving the Substring Checker with these

additional features:

1. Modify the program to return the position of the

substring if found.

2. Create a GUI version using Tkinter for interactive

input.

3. Implement case-insensitive substring checking.

4. Enhance error handling for empty input cases.

5. Allow users to search for multiple substrings at once.

Conclusion This Substring Checker project introduces Python concepts

such as string manipulation, user input handling, and search operations.

By expanding this project, developers can explore more advanced text

processing applications in search engines and data validation.

Chapter 85: Count the Number

of Occurrences of Each

Character

Overview Counting the occurrences of each character in a

string is a common operation in text analysis, cryptography,

and data processing. This task helps in understanding

dictionary usage, loops, and string manipulation in Python.

This chapter covers the step-by-step implementation of

counting character occurrences, handling user input, and

displaying results effectively.

Key Concepts of Character Frequency Counting in

Python

Using a Dictionary for Counting:

Storing characters as keys and their

counts as values.

Iterating Through a String:

Processing each character and updating

its count.

Using collections.Counter :

A built-in method to simplify frequency

counting.

Example Character Counting

Input

String
Character Count

"banana" { 'b': 1, 'a': 3, 'n': 2 }

"hello" { 'h': 1, 'e': 1, 'l': 2, 'o': 1 }

"apple" { 'a': 1, 'p': 2, 'l': 1, 'e': 1 }

Basic Rules for Character Frequency Counting in

Python

Rule Correct Example

Use a dictionary to store char_count = {}

counts

Use a loop to iterate through

a string
for char in text:

Use Counter for simplified

counting
collections.Counter(text)

Ignore case differences

(optional)
text.lower()

Syntax Table

SL
Concep

t
Syntax/Example Description

1
Get user

input

text = input("Enter a

string: ")

Takes input

from the

user.

2

Initialize

dictiona

ry

char_count = {}

Creates an

empty

dictionary.

3

Loop

through

the

string

for char in text:

Iterates

through

characters.

4

Update

characte

r count

char_count[char] =

char_count.get(char, 0)

+ 1

Increments

character

count.

5

Print

frequen

cy result

print(char_count)

Displays

character

occurrences.

Real-Life Project: Character Frequency Counter

Project Code:

1. from collections import Counter

2. def count_characters(text):

3. char_count = Counter(text)

4. return char_count

5. text = input("Enter a string: ")

6. result = count_characters(text)

7. print("Character Frequency:")

8. for char, count in result.items():

9. print(f"'{char}': {count}")

Project Code Explanation Table

Line Code Section Description

1 from collections import Imports Counter for

Counter counting characters.

2-4
def

count_characters(text):

Defines a function to

count character

occurrences.

3
char_count =

Counter(text)

Uses Counter to count

characters efficiently.

5
text = input("Enter a

string: ")
Takes user input.

6
result =

count_characters(text)

Calls the function and

stores the result.

7
print("Character

Frequency:")
Displays output header.

8-9
for char, count in

result.items():

Iterates through character

counts and prints them.

Expected Results

The program asks the user to enter a string.

It processes the string and counts the occurrences

of each character.

It prints a list of characters along with their

frequency.

Hands-On Exercise Try improving the Character Frequency

Counter with these additional features:

1. Ignore case differences to count uppercase

and lowercase letters as the same.

2. Create a GUI version using Tkinter for

interactive input.

3. Ignore spaces and punctuation in character

counting.

4. Sort the output by character frequency.

5. Save the character count results to a file.

Conclusion This Character Frequency Counter project

introduces Python concepts such as dictionaries, loops, and

built-in modules like collections.Counter . By expanding this

project, developers can explore more advanced text

processing applications in data analysis and natural

language processing.

Chapter 86: Reverse a List

Overview Reversing a list is a fundamental operation in

Python that is useful in various applications such as data

analysis, sorting, and algorithm optimization. Python

provides multiple ways to reverse a list efficiently.

This chapter covers different techniques to reverse a list,

handling user input, and implementing efficient methods for

reversing lists in Python.

Key Concepts of Reversing a List in Python

Using the reverse() Method:

The built-in method that directly modifies

the list.

Using Slicing ([::-1]):

A simple and readable method to reverse

a list.

Using reversed() Function:

Returns an iterator for a reversed list.

Example List Reversal

Original List Reversed List

[1, 2, 3, 4, 5] [5, 4, 3, 2, 1]

['a', 'b', 'c'] ['c', 'b', 'a']

[10, 20, 30, 40] [40, 30, 20, 10]

Basic Rules for Reversing a List in Python

Rule Correct Example

Use list.reverse() for in-place

reversal
my_list.reverse()

Use slicing for a new reversed

list

reversed_list =

my_list[::-1]

Use reversed() for an iterator list(reversed(my_list))

Syntax Table

SL Concept Syntax/Example Description

1 Get user my_list = Takes a list of

input as a

list

list(map(int,

input().split()))

numbers as

input.

2

Reverse

using

reverse()

my_list.reverse()
Modifies the

list in place.

3

Reverse

using

slicing

reversed_list =

my_list[::-1]

Creates a

new reversed

list.

4

Reverse

using

reversed(

)

list(reversed(my_list)

)

Returns a

reversed

iterator.

Real-Life Project: Reverse a List

Project Code:

1. def reverse_list(lst):

2. return lst[::-1]

3. my_list = list(map(int, input("Enter numbers separated

by space: ").split()))

4. reversed_list = reverse_list(my_list)

5. print("Reversed List:", reversed_list)

Project Code Explanation Table

Line Code Section Description

1 def reverse_list(lst):
Defines a function to

reverse a list.

2 return lst[::-1]
Uses slicing to

reverse the list.

3
my_list = list(map(int,

input().split()))

Takes user input as a

list of integers.

4
reversed_list =

reverse_list(my_list)

Calls the function to

reverse the list.

5
print("Reversed List:",

reversed_list)

Prints the reversed

list.

Expected Results

The program asks the user to enter a list of

numbers.

It reverses the list and prints the output.

The reversed list is displayed in the console.

Hands-On Exercise Try improving the List Reversal

program with these additional features:

1. Allow the program to reverse lists with

mixed data types (strings, floats).

Chapter 87: Find the Second

Largest Element in a List
Overview Finding the second largest element in a list is a

common programming task used in data processing and

competitive programming. This exercise helps in

understanding list operations, sorting techniques, and

conditional logic in Python.

This chapter covers different methods to find the second

largest element efficiently, handling edge cases, and

ensuring optimized performance.

Key Concepts of Finding the Second Largest Element

in Python

Sorting and Indexing:

Sorting the list and selecting the second

largest element.

Using Loops and Conditions:

Iterating through the list to find the two

largest numbers.

Handling Duplicates and Edge Cases:

Ensuring the list has at least two unique

numbers.

Example Second Largest Element Searches

Input List Second Largest Element

[10, 20, 4, 45, 99] 45

[5, 1, 8, 8, 3] 5

[100, 100, 99] 99

[7, 7, 7] None (No Second Largest)

Basic Rules for Finding the Second Largest Element

in Python

Rule Correct Example

Use sorted() to sort and sorted_list[-2]

get the second largest

Use a loop to track the two

largest elements

if num > first: second =

first; first = num

Remove duplicates to

ensure uniqueness
list(set(numbers))

Handle lists with fewer than

two unique values

if len(set(numbers)) < 2:

return None

Syntax Table

SL
Concep

t
Syntax/Example Description

1

Get user

input as

a list

numbers =

list(map(int,

input().split()))

Takes a list of

numbers as

input.

2

Remove

duplicat

es

unique_numbers =

list(set(numbers))

Ensures

uniqueness

before finding

second

largest.

3
Sort the

list

sorted_numbers =

sorted(unique_number

s)

Sorts the

numbers in

ascending

order.

4

Find

second

largest

second_largest =

sorted_numbers[-2]

Retrieves the

second last

element.

5

Use a

loop to

track

max

values

if num > first: second

= first; first = num

Finds the two

largest values

efficiently.

Real-Life Project: Find the Second Largest Element

Project Code:

1. def second_largest(numbers):

2. unique_numbers = list(set(numbers))

3. if len(unique_numbers) < 2:

4. return None

5. unique_numbers.sort()

6. return unique_numbers[-2]

7. numbers = list(map(int, input("Enter numbers separated

by space: ").split()))

8. result = second_largest(numbers)

9. if result is None:

10. print("No second largest element found.")

11. else:

12. print("Second largest element:", result)

Project Code Explanation Table

Lin

e
Code Section Description

1
def

second_largest(numbers):

Defines a function to

find the second largest

number.

2
unique_numbers =

list(set(numbers))

Removes duplicates to

ensure unique values.

3
if len(unique_numbers) <

2:

Checks if there are at

least two unique

numbers.

4 return None

Returns None if no

second largest element

exists.

5 unique_numbers.sort()
Sorts the list in

ascending order.

6
return

unique_numbers[-2]

Retrieves the second

largest number.

7
numbers = list(map(int,

input().split()))

Takes user input as a list

of integers.

8
result =

second_largest(numbers)

Calls the function to find

the second largest

number.

9-

10
if result is None:

Handles cases where

there is no second

largest value.

11-

12

print("Second largest

element:", result)

Prints the second largest

number if found.

Expected Results

The program asks the user to enter a list of

numbers.

It processes the list and finds the second largest

unique number.

It prints the result or notifies the user if no second

largest element exists.

Hands-On Exercise Try improving the Second Largest

Element Finder with these additional features:

1. Use a loop instead of sorting to improve

performance.

2. Create a GUI version using Tkinter for

interactive input.

Chapter 88: Create a Digital

Clock
Overview A digital clock displays the current time and

updates in real-time. This project helps in understanding GUI

programming using Tkinter and working with the time

module in Python.

This chapter covers the step-by-step implementation of a

digital clock, updating time dynamically, and enhancing the

interface using Tkinter .

Key Concepts of a Digital Clock in Python

Using Tkinter for GUI Development:

Creating a GUI window and placing a

label to display the time.

Using the time Module:

Fetching the current time using strftime .

Updating Time in Real-Time:

Using the after() method in Tkinter to

refresh the time every second.

Example Digital Clock Display

Time Format Example

12-hour 02:30:15 PM

24-hour 14:30:15

Basic Rules for Creating a Digital Clock in Python

Rule Correct Example

Use time.strftime() to get

current time

current_time =

time.strftime('%H:%M:%S')

Use Tkinter.Label() to

display time

Label(root,

text=current_time)

Use after(1000,

update_time) for updates

clock_label.after(1000,

update_time)

Syntax Table

SL Concept Syntax/Example
Descripti

on

1

Import

necessary

modules

import time, tkinter as tk

Loads the

required

modules.

2

Create a

Tkinter

window

root = tk.Tk()

Initializes

the main

window.

3

Create a

label for

time

display

clock_label =

tk.Label(root, text="")

Sets up a

label to

show time.

4

Fetch

current

time

current_time =

time.strftime('%H:%M:%

S')

Retrieves

formatted

time.

5
Schedule

updates

clock_label.after(1000,

update_time)

Updates

time every

second.

Real-Life Project: Digital Clock

Project Code:

1. import time

2. import tkinter as tk

3. def update_time():

4. current_time = time.strftime('%H:%M:%S %p')

5. clock_label.config(text=current_time)

6. clock_label.after(1000, update_time)

7. root = tk.Tk()

8. root.title("Digital Clock")

9. root.geometry("300x100")

10. clock_label = tk.Label(root, font=("Arial", 30),

bg="black", fg="white")

11. clock_label.pack(pady=20)

12. update_time()

13. root.mainloop()

Project Code Explanation Table

Lin

e
Code Section Description

1-2 import time, tkinter as tk

Imports

necessary

modules.

3-6 def update_time():

Defines a

function to

update the

clock every

second.

4
current_time =

time.strftime('%H:%M:%S %p')

Fetches the

current time

in 12-hour

format.

5 clock_label.config(text=current_time)

Updates the

label text

with the

current time.

6 clock_label.after(1000, update_time)

Calls the

function

every second

for updates.

7-9 root = tk.Tk()

Initializes the

main

application

window.

10-

11
clock_label = tk.Label(...)

Creates and

configures a

label for

displaying

time.

12 update_time()

Calls the

function to

start

updating the

clock.

13 root.mainloop()

Runs the

Tkinter event

loop.

Expected Results

The program opens a GUI window displaying the

current time.

The clock updates every second automatically.

The time is formatted as HH:MM:SS AM/PM.

Hands-On Exercise Try improving the Digital Clock with

these additional features:

1. Allow users to switch between 12-hour and

24-hour formats.

2. Customize the clock interface with different

fonts and colors.

3. Display the date along with the time.

4. Create an alarm feature that alerts users at

a set time.

5. Implement a stopwatch feature using

Tkinter buttons.

Conclusion This Digital Clock project introduces Python

concepts such as GUI development, event handling, and

time manipulation. By expanding this project, developers

can create more advanced time-related applications for

daily use.

Chapter 89: Number System

Conversion
Overview Number system conversion is an essential

concept in computer science and programming. This project

helps in converting numbers between different bases such

as binary, octal, decimal, and hexadecimal using Python’s

built-in functions.

This chapter covers various techniques to convert numbers

between different number systems, handling user input, and

displaying results effectively.

Key Concepts of Number System Conversion in

Python

Using Built-in Functions:

bin() , oct() , hex() , and int() for

conversion.

Converting Between Number Systems:

Decimal to Binary, Octal, Hexadecimal.

Binary, Octal, Hexadecimal to Decimal.

Handling User Input and Displaying Results:

Ensuring proper format and valid number

entry.

Example Number Conversions

Input

Number
Base

Converted

Value

25 Binary 11001

1101 Decimal (from Binary) 13

45 Octal 55

A3 Decimal (from Hex) 163

Basic Rules for Number System Conversion in Python

Rule Correct Example

Convert Decimal to Binary bin(25) → '0b11001'

Convert Decimal to Octal oct(45) → '0o55'

Convert Decimal to Hexadecimal hex(255) → '0xff'

Convert Binary to Decimal int('1010', 2) → 10

Convert Octal to Decimal int('55', 8) → 45

Convert Hexadecimal to Decimal int('A3', 16) → 163

Syntax Table

SL Concept
Syntax/Examp

le
Description

1

Convert

Decimal to

Binary

bin(10)

Returns binary

equivalent of a

decimal number.

2

Convert

Decimal to

Octal

oct(45)

Returns octal

equivalent of a

decimal number.

3

Convert

Decimal to

Hexadecima

l

hex(255)

Returns

hexadecimal

equivalent of a

decimal number.

4

Convert

Binary to

Decimal

int('1101', 2)
Converts a binary

string to decimal.

5

Convert

Octal to

Decimal

int('55', 8)
Converts an octal

string to decimal.

6

Convert

Hexadecima

l to Decimal

int('A3', 16)

Converts a

hexadecimal string

to decimal.

Real-Life Project: Number System Converter

Project Code:

1. def convert_number(number, from_base, to_base):

2. decimal_number = int(number, from_base)

3. if to_base == 2:

4. return bin(decimal_number)[2:]

5. elif to_base == 8:

6. return oct(decimal_number)[2:]

7. elif to_base == 16:

8. return hex(decimal_number)[2:].upper()

9. else:

10. return str(decimal_number)

11. number = input("Enter the number: ")

12. from_base = int(input("Enter the base of the input

number (2, 8, 10, 16): "))

13. to_base = int(input("Enter the base to convert to (2, 8,

10, 16): "))

14. result = convert_number(number, from_base, to_base)

15. print(f"Converted value: {result}")

Project Code Explanation Table

Lin

e
Code Section Description

1
def convert_number(number,

from_base, to_base):

Defines a function

to convert between

number systems.

2
decimal_number = int(number,

from_base)

Converts the input

number to decimal.

3-4 if to_base == 2:
Converts decimal

to binary.

5-6 elif to_base == 8:
Converts decimal

to octal.

7-8 elif to_base == 16:
Converts decimal

to hexadecimal.

9-

10
else:

Returns decimal as

a string.

11
number = input("Enter the

number: ")

Takes user input for

the number to

convert.

12

from_base = int(input("Enter

the base of the input number

(2, 8, 10, 16): "))

Takes the base of

the input number.

13

to_base = int(input("Enter the

base to convert to (2, 8, 10,

16): "))

Takes the base for

conversion.

14 result =

convert_number(number,

Calls the function

to convert the

from_base, to_base) number.

15
print(f"Converted value:

{result}")

Displays the

converted result.

Expected Results

The program asks the user to enter a number and

its base.

It asks for the base to which the number should be

converted.

It performs the conversion and displays the result.

Hands-On Exercise Try improving the Number System

Converter with these additional features:

1. Enhance the program to validate user input

before conversion.

Chapter 90: Guess the Number

Game
Overview The "Guess the Number" game is a simple

interactive game where the user attempts to guess a

randomly generated number. This project helps in

understanding random number generation, loops,

conditional statements, and user input handling in Python.

This chapter covers the step-by-step implementation of the

game, setting a range for guessing, providing feedback to

the player, and implementing attempts tracking.

Key Concepts of the Guess the Number Game in

Python

Using the random Module:

Generating a random number within a

defined range.

Handling User Input:

Taking guesses from the user and

validating input.

Using Loops and Conditional Statements:

Providing feedback on whether the guess

is too high or too low.

Example Game Flow

User Guess Feedback

50 Too low!

75 Too high!

62 Correct! You won!

Basic Rules for the Guess the Number Game in

Python

Rule Correct Example

Generate a random

number
random.randint(1, 100)

Take user input
guess = int(input("Enter your

guess: "))

Compare guess with

target
if guess > target:

Provide feedback to

the user
print("Too high!")

Syntax Table

SL Concept
Syntax/Exampl

e
Description

1

Import

random

module

import random

Loads the module

to generate

random numbers.

2

Generate

a random

number

random.randint(

1, 100)

Generates a

random number

between 1 and

100.

3
Get user

input

guess =

int(input("Enter

your guess: "))

Takes a number

input from the

user.

4

Use a loop

for

multiple

attempts

while guess !=

target:

Keeps asking for

input until the

correct guess.

5
Provide

hints

if guess >

target:

print("Too

high!")

Gives feedback

based on the

user's guess.

Real-Life Project: Guess the Number Game

Project Code:

1. import random

2. def guess_the_number():

3. target = random.randint(1, 100)

4. attempts = 0

5. while True:

6. try:

7. guess = int(input("Guess a number between 1

and 100: "))

8. attempts += 1

9. if guess < target:

10. print("Too low! Try again.")

11. elif guess > target:

12. print("Too high! Try again.")

13. else:

14. print(f"Congratulations! You guessed the

number {target} in {attempts} attempts.")

15. break

16. except ValueError:

17. print("Invalid input! Please enter a number.")

18. guess_the_number()

Project Code Explanation Table

Lin

e
Code Section Description

1 import random
Imports the random module

for generating numbers.

2

def

guess_the_number()

:

Defines the function for the

game.

3

target =

random.randint(1,

100)

Generates a random target

number.

4 attempts = 0 Initializes attempt counter.

5 while True:
Starts an infinite loop until the

correct number is guessed.

6-7
try: guess =

int(input(...))

Takes user input and converts

it to an integer.

8 attempts += 1
Increments the attempts

counter.

9-

10
if guess < target:

Prints "Too low!" if the guess is

smaller than the target.

11-

12
elif guess > target:

Prints "Too high!" if the guess

is larger than the target.

13-

15
else:

Congratulates the user and

exits the loop when the correct

number is guessed.

16-

17
except ValueError:

Handles invalid inputs and

prompts for a valid number.

18 guess_the_number()
Calls the function to start the

game.

Expected Results

The program generates a random number

between 1 and 100.

The user is prompted to enter a guess.

The program provides hints if the guess is too high

or too low.

The game continues until the correct number is

guessed.

The number of attempts is displayed at the end.

Hands-On Exercise Try improving the Guess the Number

game with these additional features:

1. Allow users to set the number range (e.g., 1-

50, 1-500).

2. Create a GUI version using Tkinter for

interactive play.

3. Implement difficulty levels that limit the

number of attempts.

4. Store and display high scores (minimum

attempts to win).

5. Give hints such as "You're close!" when the

guess is within 5 of the target.

Conclusion This Guess the Number project introduces

Python concepts such as loops, conditional statements,

exception handling, and random number generation. By

expanding this project, developers can explore more

interactive and challenging versions of the game.

Chapter 91: Python Dictionary

Sorting
Overview Sorting a dictionary in Python is a common

operation used in data processing and organizing structured

information. Python provides various methods to sort

dictionaries based on keys or values efficiently.

This chapter covers different ways to sort dictionaries,

handling user input, and displaying results in an organized

manner.

Key Concepts of Dictionary Sorting in Python

Sorting by Keys:

Using sorted(dictionary.keys()) to sort by

keys.

Sorting by Values:

Using sorted(dictionary.items(),

key=lambda item: item[1]) .

Using operator.itemgetter() :

Importing the operator module for

efficient sorting.

Example Dictionary Sorting

Input Dictionary Sorted by Keys
Sorted by

Values

{'b': 3, 'a': 5, 'c':

1}

{'a': 5, 'b': 3, 'c':

1}

{'c': 1, 'b': 3, 'a':

5}

{'x': 8, 'y': 2, 'z':

10}

{'x': 8, 'y': 2, 'z':

10}

{'y': 2, 'x': 8, 'z':

10}

Basic Rules for Sorting a Dictionary in Python

Rule Correct Example

Sort by keys sorted(dictionary.keys())

Sort by values
sorted(dictionary.items(),

key=lambda item: item[1])

Use

operator.itemgetter()

for efficiency

sorted(dictionary.items(),

key=itemgetter(1))

Convert sorted result

back to dictionary
dict(sorted_items)

Syntax Table

S

L
Concept Syntax/Example

Descripti

on

1 Sort by keys sorted(dictionary.keys())

Returns a

sorted list

of keys.

2
Sort dictionary by

keys

dict(sorted(dictionary.items(

)))

Returns a

dictionary

sorted by

keys.

3
Sort by values

using lambda

sorted(dictionary.items(),

key=lambda x: x[1])

Returns

sorted

dictionary

items by

values.

4

Use

operator.itemgette

r()

sorted(dictionary.items(),

key=itemgetter(1))

Efficiently

sorts

dictionary

items.

5

Convert sorted

items back to

dictionary

dict(sorted_items)

Converts

sorted

items into

a

dictionary.

Real-Life Project: Dictionary Sorting

Project Code:

1. from operator import itemgetter

2. def sort_dict_by_key(dictionary):

3. return dict(sorted(dictionary.items()))

4. def sort_dict_by_value(dictionary):

5. return dict(sorted(dictionary.items(), key=itemgetter(1)))

6. user_dict = {'apple': 3, 'banana': 1, 'cherry': 2}

7. print("Original Dictionary:", user_dict)

8. print("Sorted by Keys:", sort_dict_by_key(user_dict))

9. print("Sorted by Values:", sort_dict_by_value(user_dict))

Project Code Explanation Table

Lin

e
Code Section Description

1
from operator import

itemgetter

Imports

itemgetter for

sorting.

2-3
def

sort_dict_by_key(dictionary):

Defines a function

to sort dictionary

by keys.

4-5
def

sort_dict_by_value(dictionary):

Defines a function

to sort dictionary

by values.

6
user_dict = {'apple': 3,

'banana': 1, 'cherry': 2}
Example dictionary.

7
print("Original Dictionary:",

user_dict)

Displays the

original dictionary.

8
print("Sorted by Keys:",

sort_dict_by_key(user_dict))

Prints dictionary

sorted by keys.

9
print("Sorted by Values:",

sort_dict_by_value(user_dict))

Prints dictionary

sorted by values.

Expected Results

The program prints the original dictionary.

It sorts the dictionary by keys and prints the

result.

It sorts the dictionary by values and prints the

result.

Hands-On Exercise Try improving the Dictionary Sorting

program with these additional features:

1. Allow users to input their own dictionary

values.

2. Create a GUI version using Tkinter for

interactive sorting.

3. Allow users to sort in ascending or

descending order.

4. Enhance the program to handle large data

sets efficiently.

5. Implement sorting based on custom key

functions.

Conclusion This Dictionary Sorting project introduces

Python concepts such as dictionaries, sorting techniques,

and lambda functions. By expanding this project, developers

can explore more efficient ways of organizing data in real-

world applications.

Chapter 92: Check for Perfect

Number
Overview A perfect number is a positive integer that is

equal to the sum of its proper divisors, excluding itself. For

example, 6 is a perfect number because its divisors

(excluding 6) are 1, 2, and 3, and their sum is 6.

This chapter covers the implementation of a perfect number

checker, handling user input, and verifying results efficiently

using Python.

Key Concepts of Checking for a Perfect Number in

Python

Using Loops for Finding Divisors:

Iterating through numbers to find

divisors.

Using Conditional Statements:

Checking if the sum of divisors equals the

original number.

Handling User Input and Displaying Results:

Ensuring valid input and proper output

formatting.

Example Perfect Number Checks

Number Perfect? Sum of Proper Divisors

6 Yes 1 + 2 + 3 = 6

28 Yes 1 + 2 + 4 + 7 + 14 = 28

15 No 1 + 3 + 5 = 9

496 Yes 1 + 2 + 4 + 8 + ... + 248 = 496

Basic Rules for Checking a Perfect Number in Python

Rule Correct Example

Find divisors using a loop for i in range(1, num):

Sum up the proper divisors sum_divisors += i

Check if the sum equals the if sum_divisors == num:

number

Ensure the number is positive
if num <= 0: return

False

Syntax Table

SL Concept
Syntax/Exampl

e
Description

1
Get user

input

num =

int(input("Enter

a number: "))

Takes an integer

input.

2

Initialize

sum

variable

sum_divisors = 0
Stores the sum of

divisors.

3

Use loop

to find

divisors

for i in range(1,

num):

Iterates through

numbers to find

divisors.

4

Add

divisors

to sum

sum_divisors +=

i

Sums up proper

divisors.

5

Check if

number is

perfect

if sum_divisors

== num:

Compares sum to

the original

number.

Real-Life Project: Perfect Number Checker

Project Code:

1. def is_perfect_number(num):

2. if num < 1:

3. return False

4. sum_divisors = sum(i for i in range(1, num) if num % i

== 0)

5. return sum_divisors == num

6. num = int(input("Enter a number: "))

7. if is_perfect_number(num):

8. print(f"{num} is a perfect number.")

9. else:

10. print(f"{num} is NOT a perfect number.")

Project Code Explanation Table

Lin

e
Code Section Description

1 def is_perfect_number(num):

Defines the function

to check perfect

numbers.

2-3 if num < 1:
Ensures the number

is positive.

4

sum_divisors = sum(i for i in

range(1, num) if num % i ==

0)

Finds and sums up

divisors.

5 return sum_divisors == num
Returns True if the

number is perfect.

6
num = int(input("Enter a

number: "))
Takes user input.

7-

10
if is_perfect_number(num):

Calls the function

and prints the

result.

Expected Results

The program asks the user to enter a number.

It calculates the sum of proper divisors.

It checks if the sum equals the original number.

It prints whether the number is perfect or not.

Hands-On Exercise Try improving the Perfect Number

Checker with these additional features:

1. Allow the program to check a range of

numbers for perfect numbers.

2. Create a GUI version using Tkinter for

interactive input.

3. Optimize performance by iterating only up

to num//2 .

4. Enhance the program to check for near-

perfect numbers.

5. Store results and display all perfect

numbers found within a given range.

Conclusion This Perfect Number Checker project introduces

Python concepts such as loops, conditional statements, and

mathematical operations. By expanding this project,

developers can explore number theory and its applications

in computing and data analysis.

Chapter 93: Create a Random

Quote Generator
Overview A Random Quote Generator is a fun and

interactive program that displays a randomly selected quote

every time it runs. This project helps in understanding the

use of lists, random selection, and user interaction in

Python.

This chapter covers the step-by-step implementation of a

random quote generator, handling user input, and

formatting output efficiently.

Key Concepts of a Random Quote Generator in

Python

Using Lists to Store Quotes:

A collection of predefined quotes for

selection.

Using the random Module:

Selecting a random quote from the list.

Displaying Quotes to the User:

Formatting the output for readability.

Example Random Quotes Output

Run Random Quote Output

1st
"Believe you can and you're halfway there." -

Theodore Roosevelt

2nd

"Success is not final, failure is not fatal: It is

the courage to continue that counts." -

Winston Churchill

3rd
"Life is 10% what happens to us and 90% how

we react to it." - Charles R. Swindoll

Basic Rules for Random Quote Generation in Python

Rule Correct Example

Store quotes in a list quotes = ["Quote 1", "Quote 2"]

Use random.choice()

for selection
random.choice(quotes)

Print the selected quote print(random_quote)

Allow users to request

another quote

input("Press Enter to get a new

quote...")

Syntax Table

S

L
Concept Syntax/Example

Descriptio

n

1

Import

random

module

import random

Loads the

random

selection

module.

2

Define a

list of

quotes

quotes = ["Quote 1",

"Quote 2"]

Stores

multiple

quotes.

3

Select a

random

quote

random.choice(quotes)

Picks a

quote

randomly.

4
Display

the quote
print(random_quote)

Prints the

selected

quote.

5

Loop for

user

interactio

n

while input("Get

another quote? (y/n)")

== 'y':

Allows

multiple

quote

requests.

Real-Life Project: Random Quote Generator

Project Code:

1. import random

2. quotes = [

3. "Believe you can and you're halfway there. - Theodore

Roosevelt",

4. "Success is not final, failure is not fatal: It is the

courage to continue that counts. - Winston Churchill",

5. "Life is 10% what happens to us and 90% how we

react to it. - Charles R. Swindoll",

6. "Happiness depends upon ourselves. - Aristotle",

7. "Do what you can, with what you have, where you are.

- Theodore Roosevelt"

8.]

9. def get_random_quote():

10. return random.choice(quotes)

11. while True:

12. print("\nRandom Quote: ")

13. print(get_random_quote())

14. user_input = input("\nWould you like another quote?

(y/n): ")

15. if user_input.lower() != 'y':

16. break

Project Code Explanation Table

Lin

e
Code Section Description

1 import random

Imports the random

module for selecting

quotes.

2-8 quotes = [...]
Defines a list of

inspirational quotes.

9-

10
def get_random_quote():

Defines a function to

return a random

quote.

11 while True:

Starts a loop to allow

multiple quote

requests.

12-

13
print(get_random_quote())

Displays a randomly

selected quote.

14

user_input = input("Would

you like another quote?

(y/n): ")

Asks the user if they

want another quote.

15-

16

if user_input.lower() != 'y':

break

Exits the loop if the

user enters anything

other than 'y'.

Expected Results

The program displays a randomly selected quote

each time it runs.

It prompts the user to request another quote.

If the user enters 'y', it generates a new quote;

otherwise, it exits.

Hands-On Exercise Try improving the Random Quote

Generator with these additional features:

1. Allow users to add their own quotes to the

list dynamically.

2. Create a GUI version using Tkinter for

interactive display.

3. Store quotes in an external file and load

them dynamically.

4. Categorize quotes (e.g., motivational, life,

success) and let users choose a category.

Chapter 94: Create a Basic Unit

Converter
Overview A unit converter is a useful tool that allows users

to convert values from one measurement unit to another.

This project helps in understanding mathematical

operations, conditional statements, and user input handling

in Python.

This chapter covers the step-by-step implementation of a

basic unit converter, handling multiple unit types, and

displaying accurate conversion results.

Key Concepts of a Unit Converter in Python

Using Dictionaries for Conversion Factors:

Storing conversion values for easy

lookup.

Using Conditional Statements:

Determining the correct conversion

based on user input.

Handling User Input and Displaying Results:

Ensuring valid input and providing

formatted output.

Example Unit Conversions

Input

Value
From Unit To Unit

Converted

Value

1 Kilometers Miles 0.621371

5 Kilograms Pounds 11.0231

100 Celsius Fahrenheit 212

60 Minutes Hours 1

Basic Rules for Unit Conversion in Python

Rule Correct Example

Use a dictionary to

store conversion

conversion_factors =

{"km_to_miles": 0.621371}

factors

Use multiplication for

conversion

miles = km *

conversion_factors["km_to_miles"]

Handle user input

dynamically
input("Enter value to convert: ")

Use conditionals to

select conversions

if from_unit == "km" and to_unit

== "miles":

Syntax Table

SL Concept Syntax/Example
Descripti

on

1
Get user

input

value =

float(input("Enter

value: "))

Takes input

from the

user.

2

Use

dictionary

for

conversion

factors

conversion_factors =

{"km_to_miles":

0.621371}

Stores

conversion

rates.

3

Convert

value using

multiplicatio

n

converted_value =

value *

conversion_factors[ke

y]

Performs

conversion

calculation

.

4
Display

result

print(f"{value} km is

{converted_value}

miles")

Prints the

converted

value.

5

Use if

statements

for unit

selection

if from_unit == "kg"

and to_unit == "lbs":

Determine

s the

correct

conversion

.

Real-Life Project: Basic Unit Converter

Project Code:

1. def convert_units(value, from_unit, to_unit):

2. conversion_factors = {

3. "km_to_miles": 0.621371,

4. "miles_to_km": 1.60934,

5. "kg_to_lbs": 2.20462,

6. "lbs_to_kg": 0.453592,

7. "celsius_to_fahrenheit": lambda c: (c * 9/5) + 32,

8. "fahrenheit_to_celsius": lambda f: (f - 32) * 5/9

9. }

10. key = f"{from_unit}_to_{to_unit}"

11. if key in conversion_factors:

12. return conversion_factors[key](value) if

callable(conversion_factors[key]) else value *

conversion_factors[key]

13. else:

14. return "Invalid conversion"

15. value = float(input("Enter value: "))

16. from_unit = input("Enter from unit: ")

17. to_unit = input("Enter to unit: ")

18. result = convert_units(value, from_unit, to_unit)

19. print(f"Converted Value: {result}")

Project Code Explanation Table

Lin

e
Code Section Description

1
def convert_units(value,

from_unit, to_unit):

Defines the function

for conversion.

2-9 conversion_factors = {...}
Stores conversion

factors in a dictionary.

10
key = f"

{from_unit}_to_{to_unit}"

Creates a dynamic key

for lookup.

11 if key in conversion_factors:
Checks if the

conversion exists.

12

return

conversion_factors[key]

(value) if callable(...)

Uses lambda functions

for dynamic

conversions.

13-

14

else: return "Invalid

conversion"

Handles invalid

conversions.

15-

17

value, from_unit, to_unit =

input(...)
Takes user input.

18
result = convert_units(value,

from_unit, to_unit)
Calls the function.

19
print(f"Converted Value:

{result}")

Displays the

converted value.

Expected Results

The program asks the user to enter a value and

select units.

It calculates and prints the converted value.

It handles different unit types dynamically.

Hands-On Exercise Try improving the Unit Converter with

these additional features:

1. Allow users to add their own conversion

factors.

2. Create a GUI version using Tkinter for

interactive use.

3. Enable more unit categories such as time,

volume, and speed.

4. Store conversion history and allow users to

view past conversions.

5. Handle edge cases such as zero or negative

values gracefully.

Conclusion This Unit Converter project introduces Python

concepts such as dictionaries, lambda functions, and

conditional logic. By expanding this project, developers can

create more advanced and flexible conversion tools for real-

world applications.

Chapter 95: Generate a Random

Color
Overview Generating random colors in Python is useful for

graphics programming, UI development, and game design.

This project helps in understanding the use of the random

module and how to represent colors in different formats

such as RGB and Hex.

This chapter covers the step-by-step implementation of

generating random colors, handling different color formats,

and displaying results effectively.

Key Concepts of Random Color Generation in Python

Using the random Module:

Generating random RGB values.

Converting RGB to Hexadecimal:

Using Python’s string formatting to

convert RGB values to Hex.

Using matplotlib to Display Colors:

Visualizing the generated random colors.

Example Random Colors

RGB Values Hex Code

(255, 0, 0) #FF0000

(34, 139, 34) #228B22

(173, 216, 230) #ADD8E6

Basic Rules for Random Color Generation in Python

Rule Correct Example

Generate RGB values random.randint(0, 255)

Convert RGB to Hex
f"#{r:02X}{g:02X}

{b:02X}"

Use matplotlib to display color plt.imshow([[color]])

Ensure RGB values are within

range
0 <= r, g, b <= 255

Syntax Table

SL Concept Syntax/Example Description

1

Import

random

module

import random

Loads the

module for

generating

random

numbers.

2

Generate

random

RGB

values

r, g, b =

random.randint(0,

255)

Generates

random color

components.

3

Convert

RGB to

Hex

hex_color = f"#

{r:02X}{g:02X}

{b:02X}"

Converts RGB to

Hex format.

4

Display

color

using

matplotlib

plt.imshow([[color

]])

Shows the

generated color

visually.

5

Return

both RGB

and Hex

values

return rgb,

hex_color

Provides color in

both formats.

Real-Life Project: Random Color Generator

Project Code:

1. import random

2. import matplotlib.pyplot as plt

3. def generate_random_color():

4. r = random.randint(0, 255)

5. g = random.randint(0, 255)

6. b = random.randint(0, 255)

7. hex_color = f"#{r:02X}{g:02X}{b:02X}"

8. return (r, g, b), hex_color

9. rgb, hex_color = generate_random_color()

10. print(f"Generated Color - RGB: {rgb}, Hex:

{hex_color}")

11. plt.figure(figsize=(2, 2))

12. plt.imshow([[rgb]], aspect='auto')

13. plt.axis('off')

14. plt.show()

Project Code Explanation Table

Lin

e
Code Section Description

1-2
import random,

matplotlib.pyplot as plt

Imports required

modules.

3 def generate_random_color():

Defines a function to

generate a random

color.

4-6
r, g, b = random.randint(0,

255)

Generates random

RGB values.

7
hex_color = f"#{r:02X}

{g:02X}{b:02X}"

Converts RGB values

to Hex.

8 return (r, g, b), hex_color
Returns both RGB

and Hex values.

9-

10

print(f"Generated Color -

RGB: {rgb}, Hex:

{hex_color}")

Displays the

generated color

values.

11-

14

plt.imshow([[rgb]],

aspect='auto')

Visualizes the color

using matplotlib .

Expected Results

The program generates and prints a random color

in RGB and Hex format.

The generated color is displayed using

matplotlib .

The colors change every time the script is run.

Hands-On Exercise Try improving the Random Color

Generator with these additional features:

1. Generate multiple random colors and display

them as a palette.

2. Allow users to specify the number of colors

to generate.

3. Create a GUI version using Tkinter for

interactive use.

4. Save the generated color palette as an

image file.

5. Allow users to specify a preferred color

range (e.g., pastel shades, dark colors).

Conclusion This Random Color Generator project

introduces Python concepts such as random number

generation, string formatting, and visualization using

matplotlib . By expanding this project, developers can

explore color generation techniques for graphic design and

game development applications.

Chapter 96: Simple Python

Stopwatch
Overview A stopwatch is a time-tracking tool that helps in

measuring elapsed time accurately. This project helps in

understanding Python's time module, user input handling,

and event-based programming.

This chapter covers the step-by-step implementation of a

simple stopwatch, handling start/stop functionality, and

displaying elapsed time efficiently.

Key Concepts of a Python Stopwatch

Using the time Module:

Tracking the start and stop times.

Handling User Input:

Allowing users to start, stop, and reset

the stopwatch.

Formatting Elapsed Time:

Displaying time in a readable format

(HH:MM:SS).

Example Stopwatch Usage

Action Output

Start Stopwatch started...

Stop Elapsed Time: 00:02:15

Reset Stopwatch reset to 00:00:00

Basic Rules for Implementing a Stopwatch in Python

Rule Correct Example

Use time.time() to get

current time
start_time = time.time()

Calculate elapsed time
elapsed = time.time() -

start_time

Format time using

divmod()

hours, rem =

divmod(seconds, 3600)

Handle user input for

control
input("Press Enter to stop...")

Syntax Table

SL Concept Syntax/Example
Descriptio

n

1

Import

time

module

import time

Loads the

module for

time

tracking.

2

Get

current

time

start_time =

time.time()

Stores the

start

timestamp.

3

Calculate

elapsed

time

elapsed = time.time()

- start_time

Computes

time

difference.

4

Format

time for

display

f"{int(hours):02}:

{int(minutes):02}:

{int(seconds):02}"

Converts

time to

HH:MM:SS.

5

Use loop

for real-

time

updates

while running:

print_elapsed_time()

Continuousl

y updates

the display.

Real-Life Project: Simple Python Stopwatch

Project Code:

1. import time

2. def format_time(seconds):

3. hours, rem = divmod(seconds, 3600)

4. minutes, seconds = divmod(rem, 60)

5. return f"{int(hours):02}:{int(minutes):02}:

{int(seconds):02}"

6. def stopwatch():

7. input("Press Enter to start the stopwatch...")

8. start_time = time.time()

9. input("Press Enter to stop the stopwatch...")

10. elapsed_time = time.time() - start_time

11. print(f"Elapsed Time: {format_time(elapsed_time)}")

12. stopwatch()

Project Code Explanation Table

Lin

e
Code Section Description

1 import time
Imports the time

module.

2-5 def format_time(seconds):
Defines a function to

format elapsed time.

3-4 divmod()

Converts seconds

into hours, minutes,

and seconds.

6 def stopwatch():
Defines the main

stopwatch function.

7
input("Press Enter to start the

stopwatch...")

Waits for user to

start.

8 start_time = time.time()
Records the start

time.

9
input("Press Enter to stop the

stopwatch...")

Waits for user to

stop.

10
elapsed_time = time.time() -

start_time

Calculates elapsed

time.

11
print(f"Elapsed Time:

{format_time(elapsed_time)}")

Displays formatted

elapsed time.

Expected Results

The program waits for the user to start the

stopwatch.

It calculates the elapsed time until the user stops

it.

It displays the formatted elapsed time in

HH:MM:SS format.

Hands-On Exercise Try improving the Python Stopwatch

with these additional features:

1. Allow users to pause and resume the

stopwatch.

2. Create a GUI version using Tkinter for

better user interaction.

3. Add a lap-time feature to record multiple

time intervals.

4. Enable a countdown timer mode for timed

activities.

5. Display live elapsed time while running

instead of only at the end.

Conclusion This Python Stopwatch project introduces time-

based calculations, user interaction handling, and

formatting time outputs. By expanding this project,

developers can build more advanced timing applications

such as countdown timers, alarms, or productivity trackers.

Chapter 97: Sorting a List of

Tuples
Overview Sorting a list of tuples is a common operation in

data processing and manipulation. Tuples often contain

multiple elements, such as (name, age) or (score,

student_id), and sorting helps organize the data efficiently.

This chapter covers different techniques to sort a list of

tuples, including sorting by the first element, sorting by a

specific index, and sorting using custom key functions.

Key Concepts of Sorting a List of Tuples in Python

Using sorted() Function:

Sorting tuples based on default order

(first element).

Using lambda for Custom Sorting:

Sorting tuples based on a specific

element.

Using operator.itemgetter() :

A more efficient way to sort by an index.

Example Tuple Sorting

Input List
Sorted by First

Element

Sorted by

Second Element

[(3, 'Banana'), (1,

'Apple'), (2,

'Cherry')]

[(1, 'Apple'), (2,

'Cherry'), (3,

'Banana')]

[(3, 'Banana'), (1,

'Apple'), (2,

'Cherry')]

[(20, 'Alice'), (18,

'Bob'), (25,

'Charlie')]

[(18, 'Bob'), (20,

'Alice'), (25,

'Charlie')]

[(20, 'Alice'), (18,

'Bob'), (25,

'Charlie')]

Basic Rules for Sorting a List of Tuples in Python

Rule Correct Example

Use sorted() for basic

sorting
sorted(list_of_tuples)

Use lambda to sort by

index

sorted(list_of_tuples,

key=lambda x: x[1])

Use reverse=True for

descending order

sorted(list_of_tuples,

reverse=True)

Use operator.itemgetter()

for efficiency

sorted(list_of_tuples,

key=itemgetter(1))

Syntax Table

SL Concept Syntax/Example Description

1

Sort by

first

element

sorted(list_of_tuple

s)

Uses default sorting

(by first element).

2

Sort by

second

element

sorted(list_of_tuple

s, key=lambda x:

x[1])

Uses lambda to

sort by index.

3

Sort in

descendin

g order

sorted(list_of_tuple

s, reverse=True)

Sorts in descending

order.

4

Use

itemgetter

() for

efficiency

sorted(list_of_tuple

s,

key=itemgetter(1)

)

Sorts using

operator.itemgetter(

) .

Real-Life Project: Sorting a List of Tuples

Project Code:

1. from operator import itemgetter

2. def sort_tuples_by_index(tuples_list, index,

descending=False):

3. return sorted(tuples_list, key=itemgetter(index),

reverse=descending)

4. tuples_list = [(3, 'Banana'), (1, 'Apple'), (2, 'Cherry')]

5. print("Original List:", tuples_list)

6. sorted_by_first = sort_tuples_by_index(tuples_list, 0)

7. print("Sorted by First Element:", sorted_by_first)

8. sorted_by_second = sort_tuples_by_index(tuples_list, 1)

9. print("Sorted by Second Element:", sorted_by_second)

Project Code Explanation Table

Lin

e
Code Section Description

1 from operator import itemgetter

Imports

itemgetter for

efficient sorting.

2-3

def

sort_tuples_by_index(tuples_list,

index, descending=False):

Defines a

function to sort

tuples by any

index.

4
tuples_list = [(3, 'Banana'), (1,

'Apple'), (2, 'Cherry')]

Sample list of

tuples.

5 print("Original List:", tuples_list)
Prints the original

list.

6

sorted_by_first =

sort_tuples_by_index(tuples_list,

0)

Sorts by first

element.

7
print("Sorted by First Element:",

sorted_by_first)

Displays sorted

tuples.

8

sorted_by_second =

sort_tuples_by_index(tuples_list,

1)

Sorts by second

element.

9
print("Sorted by Second

Element:", sorted_by_second)

Displays sorted

tuples.

Expected Results

The program prints the original list of tuples.

It sorts the list by the first element and prints the

result.

It sorts the list by the second element and prints

the result.

Hands-On Exercise Try improving the Tuple Sorting

program with these additional features:

1. Allow users to enter their own list of tuples.

2. Create a GUI version using Tkinter for

interactive sorting.

3. Enable multi-level sorting (e.g., sort by

second element, then by first).

4. Handle sorting of tuples with different data

types (numbers, strings).

Chapter 98: Extract Numbers

from a String
Overview Extracting numbers from a string is a common

task in text processing, data extraction, and natural

language processing. This project helps in understanding

string manipulation, regular expressions, and list operations

in Python.

This chapter covers different techniques to extract numbers

from a string, including using loops, list comprehensions,

and regular expressions.

Key Concepts of Extracting Numbers from a String in

Python

Using Loops to Identify Digits:

Iterating through a string and extracting

numeric characters.

Using Regular Expressions (re module):

Using pattern matching to find numbers

in a string.

Converting Extracted Numbers to Integers:

Converting string numbers into integer or

float values.

Example Number Extraction

Input String Extracted Numbers

"Price is 45 dollars and 30 cents" [45, 30]

"Order #1234 shipped in 2 days" [1234, 2]

"The 5 boxes cost $100 each" [5, 100]

Basic Rules for Extracting Numbers in Python

Rule Correct Example

Use isdigit() to find numeric

characters
if char.isdigit():

Use regex for efficient re.findall(r'\d+', text)

extraction

Convert extracted numbers to

integers
list(map(int, numbers))

Handle float values properly
re.findall(r'\d+\.\d+',

text)

Syntax Table

SL Concept Syntax/Example Description

1

Extract

numbers

using

loops

[char for char in

text if

char.isdigit()]

Finds

individual

digits.

2

Use regex

to extract

numbers

re.findall(r'\d+',

text)

Finds whole

numbers in a

string.

3

Convert

extracted

values

list(map(int,

numbers))

Converts

extracted

strings to

integers.

4

Extract

decimal

numbers

re.findall(r'\d+\.\d

+', text)

Finds floating-

point numbers.

5

Combine

regex and

mapping

`[float(num) for

num in

re.findall(r'\d+.\d+

\d+', text)]`

Real-Life Project: Extract Numbers from a String

Project Code:

1. import re

2. def extract_numbers(text):

3. numbers = re.findall(r'\d+\.\d+|\d+', text)

4. return [float(num) if '.' in num else int(num) for num in

numbers]

5. text = input("Enter a string: ")

6. extracted_numbers = extract_numbers(text)

7. print("Extracted Numbers:", extracted_numbers)

Project Code Explanation Table

Lin

e
Code Section Description

1 import re Imports the re

module for regex

operations.

2 def extract_numbers(text):
Defines the function

to extract numbers.

3 `re.findall(r'\d+.\d+ \d+', text)`

4
[float(num) if '.' in num else

int(num) for num in numbers]

Converts extracted

values into numeric

types.

5 text = input("Enter a string: ")
Takes a string input

from the user.

6
extracted_numbers =

extract_numbers(text)

Calls the function to

extract numbers.

7
print("Extracted Numbers:",

extracted_numbers)

Displays the

extracted numbers.

Expected Results

The program asks the user to enter a string

containing numbers.

It extracts all numbers (integers and decimals)

from the input.

It converts them into numeric values and prints

the result.

Hands-On Exercise Try improving the Number Extraction

program with these additional features:

1. Allow extraction of negative numbers and

currency values (e.g., $50.75).

2. Create a GUI version using Tkinter for

interactive input.

3. Enable extraction of phone numbers from a

text.

4. Handle large numbers with commas (e.g.,

1,000,000).

5. Save extracted numbers to a file for later

use.

Conclusion This Number Extraction project introduces

Python concepts such as string manipulation, regular

expressions, and data processing. By expanding this project,

developers can create more advanced data extraction tools

for real-world applications in finance, text analytics, and

automation.

Chapter 99: Check if a Number

is a Palindrome
Overview A palindrome number is a number that remains

the same when its digits are reversed. For example, 121,

454, and 1221 are palindrome numbers. This project helps

in understanding number manipulation, string conversion,

and conditional logic in Python.

This chapter covers different techniques to check if a

number is a palindrome, handling user input, and displaying

results effectively.

Key Concepts of Checking Palindrome Numbers in

Python

Reversing a Number:

Converting the number to a string and

checking its reverse.

Using Loops to Reverse a Number:

Extracting digits and constructing the

reversed number.

Handling User Input and Displaying Results:

Ensuring valid input and providing

formatted output.

Example Palindrome Checks

Number Palindrome?

121 Yes

454 Yes

1221 Yes

123 No

9876 No

Basic Rules for Checking Palindromes in Python

Rule Correct Example

Convert number to string str(num) == str(num)[::-1]

and compare with its

reverse

Reverse a number using

arithmetic operations

reversed_num = int(str(num)

[::-1])

Use a loop to construct

the reversed number

while num > 0: reversed_num

= reversed_num * 10 + num %

10

Syntax Table

SL Concept Syntax/Example Description

1

Convert

number to

string

str(num)

Converts the

number into a

string.

2

Reverse

string

using

slicing

str(num)[::-1]

Gets the

reversed

version of the

string.

3
Check for

palindrome

str(num) ==

str(num)[::-1]

Compares

original and

reversed

string.

4

Use a loop

for

reversing

number

while num > 0:

Iterates over

the digits of

the number.

5

Construct

the

reversed

number

reversed_num =

reversed_num *

10 + num % 10

Builds the

reversed

number step

by step.

Real-Life Project: Palindrome Number Checker

Project Code:

1. def is_palindrome(num):

2. return str(num) == str(num)[::-1]

3. num = int(input("Enter a number: "))

4. if is_palindrome(num):

5. print(f"{num} is a palindrome number.")

6. else:

7. print(f"{num} is NOT a palindrome number.")

Project Code Explanation Table

Lin

e
Code Section Description

1 def Defines a function to check if

is_palindrome(num): a number is a palindrome.

2
return str(num) ==

str(num)[::-1]

Converts the number to a

string and compares it with its

reverse.

3

num =

int(input("Enter a

number: "))

Takes user input and converts

it to an integer.

4-5
if

is_palindrome(num):

Checks if the number is a

palindrome and prints the

result.

6-7 else:
Displays a message if the

number is not a palindrome.

Expected Results

The program asks the user to enter a number.

It checks if the number remains the same when

reversed.

It prints whether the number is a palindrome or

not.

Hands-On Exercise Try improving the Palindrome Number

Checker with these additional features:

1. Allow the program to check a range of

numbers for palindromes.

2. Create a GUI version using Tkinter for

interactive input.

3. Check for negative numbers and handle

them appropriately.

4. Optimize the logic using a mathematical

approach instead of string conversion.

5. Enhance the program to count and display

the total palindrome numbers within a given

range.

Conclusion This Palindrome Number Checker project

introduces Python concepts such as string manipulation,

loops, and number operations. By expanding this project,

developers can explore number theory and its applications

in computing and data validation.

Chapter 100: Create a Python

Program to Calculate Factorial
Overview Factorial calculation is a fundamental

mathematical operation used in permutations,

combinations, and various algorithms. The factorial of a

number nn , denoted as n!n! , is the product of all positive

integers from 1 to nn .

This chapter covers different techniques to compute the

factorial of a number, including iterative, recursive, and

built-in function approaches.

Key Concepts of Factorial Calculation in Python

Using Loops to Compute Factorial:

Iterating through numbers to calculate

factorial.

Using Recursion for Factorial Calculation:

A function that calls itself to compute

factorial.

Using Python’s math.factorial() Function:

A built-in method to compute factorial

efficiently.

Example Factorial Calculations

Number (n) Factorial (n!)

3 6 (3×2×1)

5 120 (5×4×3×2×1)

7 5040 (7×6×5×4×3×2×1)

10 3,628,800

Basic Rules for Calculating Factorial in Python

Rule Correct Example

Use a loop to calculate

factorial

for i in range(1, n+1): fact

*= i

Use recursion for factorial def fact(n): return n *

calculation fact(n-1)

Use math.factorial() for

efficiency
math.factorial(n)

Handle edge cases like 0! =

1
if n == 0: return 1

Syntax Table

SL Concept Syntax/Example
Descriptio

n

1

Calculate

factorial

using a loop

for i in range(1,

n+1): fact *= i

Uses

iteration to

compute

factorial.

2

Compute

factorial

using

recursion

def factorial(n):

return n *

factorial(n-1) if n >

1 else 1

Recursively

calculates

factorial.

3

Use

math.factoria

l()

import math;

math.factorial(n)

Uses

Python’s

built-in

function for

factorial.

4

Handle base

case in

recursion

if n == 1: return 1

Ensures

recursion

terminates

properly.

Real-Life Project: Factorial Calculator

Project Code:

1. import math

2. def factorial_iterative(n):

3. fact = 1

4. for i in range(1, n + 1):

5. fact *= i

6. return fact

7. def factorial_recursive(n):

8. return 1 if n == 0 else n * factorial_recursive(n - 1)

9. num = int(input("Enter a number: "))

10. print(f"Factorial (Iterative): {factorial_iterative(num)}")

11. print(f"Factorial (Recursive):

{factorial_recursive(num)}")

12. print(f"Factorial (Using math module):

{math.factorial(num)}")

Project Code Explanation Table

Lin

e
Code Section Description

1 import math

Imports the math

module for factorial

calculation.

2-6 def factorial_iterative(n):

Defines an iterative

function to compute

factorial.

4-5
for i in range(1, n + 1):

fact *= i

Uses a loop to compute

factorial.

7-8
def

factorial_recursive(n):

Defines a recursive

function for factorial.

9
num = int(input("Enter a

number: "))

Takes user input and

converts it to an integer.

10 factorial_iterative(num)

Calls the iterative

function and prints the

result.

11 factorial_recursive(num)

Calls the recursive

function and prints the

result.

12 math.factorial(num)
Uses the built-in function

and prints the result.

Expected Results

The program asks the user to enter a number.

It calculates the factorial using three different

methods: iterative, recursive, and the built-in

function.

It prints the calculated factorial for each method.

Hands-On Exercise Try improving the Factorial Calculator

with these additional features:

1. Allow the program to compute factorial for a

range of numbers.

2. Create a GUI version using Tkinter for

interactive input.

3. Optimize the recursive function using

memoization.

4. Handle large numbers gracefully and

prevent recursion depth errors.

5. Display the factorial calculation step-by-step

for better understanding.

	Chapter 0 Introduction to Python
	Chapter 1: Basic Calculator
	Chapter 2: To-Do List Application
	Chapter 3: Temperature Converter
	Chapter 4: Simple Alarm Clock
	Chapter 5: Countdown Timer
	Chapter 6: Age Calculator
	Chapter 7: Mad Libs Game
	Chapter 8: Simple Interest Calculator
	Chapter 9: Rock, Paper, Scissors Game
	Chapter 10: Number Guessing Game
	Chapter 11: Binary to Decimal Converter
	Chapter 12: Decimal to Binary Converter
	Chapter 13: Unit Converter (Length, Mass, etc.)
	Chapter 14: Currency Converter
	Chapter 15: Tic-Tac-Toe Game
	Chapter 16: Email Slicer (Extract Username from Email)
	Chapter 17: Countdown Timer
	Chapter 18: Simple Chatbot
	Chapter 19: Birthday Reminder App
	Chapter 20: Basic Expense Tracker
	Chapter 21: Fibonacci Series Generator
	Chapter 22: Prime Number Checker
	Chapter 23: Palindrome Checker
	Chapter 24: Leap Year Checker
	Chapter 25: Random Password Generator
	Chapter 26: Dice Roller Simulator
	Chapter 27: Multiplication Table Generator
	Chapter 28: Odd or Even Number Checker
	Chapter 29: Simple Voting System
	Chapter 30: Character Frequency Counter
	Chapter 31: Basic HTML Page Generator
	Chapter 32: Print the First N Fibonacci Numbers
	Chapter 33: Count Vowels in a String
	Chapter 34: Check if a Number is Prime
	Chapter 35: Random Joke Generator
	Chapter 36: Reverse a String
	Chapter 38: Word Frequency Counter
	Chapter 39: Armstrong Number Checker
	Chapter 40: Sum of Digits Calculator
	Chapter 41: Find the GCD and LCM of Two Numbers
	Chapter 42: Sorting a List of Numbers
	Chapter 43: Find the Maximum and Minimum from a List
	Chapter 44: Square Root Finder
	Chapter 45: Count Words in a Sentence
	Chapter 46: Check for Anagram Strings
	Chapter 47: Simple String Encryption and Decryption
	Chapter 48: Number Guessing Game with GUI
	Chapter 49: String to Title Case Converter
	Chapter 50: Days Between Two Dates Calculator
	Chapter 51: Fibonacci Series Using Recursion
	Chapter 52: Countdown Timer Using Tkinter
	Chapter 53: Check if a Year is Leap Year
	Chapter 54: Find All Divisors of a Number
	Chapter 55: Factorial Calculator Using Recursion
	Chapter 56: Sum of Even Numbers in a List
	Chapter 57: Basic Phonebook Application
	Chapter 58: Check if a String is a Pangram
	Chapter 59: Calculate BMI (Body Mass Index)
	Chapter 60: Count the Number of Digits in a Number
	Chapter 61: Sum of All Elements in a List
	Chapter 62: Print Prime Numbers from 1 to N
	Chapter 63: Convert Kilometers to Miles
	Chapter 64: Generate Multiplication Table of a Given Number
	Chapter 65: Count Consonants in a String
	Chapter 66: Check if a Word is a Palindrome
	Chapter 67: Convert Time to Seconds
	Chapter 68: Remove Duplicate Elements from a List
	Chapter 69: Find the Largest Element in a List
	Chapter 70: Check if a String is a Number
	Chapter 71: Python Quiz Game
	Chapter 72: Palindrome Number Finder
	Chapter 73: Create a Simple Quiz App
	Chapter 74: Create a Simple Text Editor
	Chapter 75: Calculator Using GUI
	Chapter 76: Reverse a Number
	Chapter 77: Simple Email Validation
	Chapter 78: Convert Hours to Minutes
	Chapter 79: Text to Speech Application
	Chapter 80: Word Count from a File
	Chapter 81: Phone Number Validator
	Chapter 82: Convert Celsius to Fahrenheit
	Chapter 83: Write a Program to Create a Folder
	Chapter 84: Check if a String is a Substring of Another String
	Chapter 85: Count the Number of Occurrences of Each Character
	Chapter 86: Reverse a List
	Chapter 87: Find the Second Largest Element in a List
	Chapter 88: Create a Digital Clock
	Chapter 89: Number System Conversion
	Chapter 90: Guess the Number Game
	Chapter 91: Python Dictionary Sorting
	Chapter 92: Check for Perfect Number
	Chapter 93: Create a Random Quote Generator
	Chapter 94: Create a Basic Unit Converter
	Chapter 95: Generate a Random Color
	Chapter 96: Simple Python Stopwatch
	Chapter 97: Sorting a List of Tuples
	Chapter 98: Extract Numbers from a String
	Chapter 99: Check if a Number is a Palindrome
	Chapter 100: Create a Python Program to Calculate Factorial

